气候变化研究进展 ›› 2020, Vol. 16 ›› Issue (4): 442-452.doi: 10.12006/j.issn.1673-1719.2019.205
收稿日期:
2019-09-05
修回日期:
2019-11-22
出版日期:
2020-07-30
发布日期:
2020-08-05
通讯作者:
李春
作者简介:
冯静,女,硕士研究生
基金资助:
FENG Jing1,2, LI Chun1,2(), FAN Lei1,2
Received:
2019-09-05
Revised:
2019-11-22
Online:
2020-07-30
Published:
2020-08-05
Contact:
LI Chun
摘要:
基于CESM模式对1.5℃和2℃两种增暖情景的模拟结果,对比分析了太平洋年代际振荡(PDO)和北太平洋涡旋振荡(NPGO)在全球稳定增暖1.5℃和2℃时期与工业革命前、历史时期在强度和周期上的差异。结果表明:全球稳定增暖1.5℃和2℃时期,PDO和NPGO的强度均比历史时期弱,且主周期缩短,这可能与全球增暖情景下海洋层结增强导致的Rossby波变快有关。PDO的强度和周期在全球增暖1.5℃和2℃这两种情景下没有明显差异;而NPGO的强度在全球稳定增暖2℃时期比1.5℃时有明显减弱,且周期缩短1 a左右。因此,0.5℃升温差异对PDO的强度和周期影响较小,而对NPGO的强度和周期影响较大。
冯静, 李春, 范磊. 全球增暖1.5℃和2℃北太平洋年代际尺度振荡的差异[J]. 气候变化研究进展, 2020, 16(4): 442-452.
FENG Jing, LI Chun, FAN Lei. Differences of decadal oscillations between global warming of 1.5℃ and 2℃ in the North Pacific[J]. Climate Change Research, 2020, 16(4): 442-452.
图1 全球地表气温较工业革命前时期变化的时间序列 注:PI,工业革命前时期(1850—1920年);HIS,历史时期(1921—2005年);LW1.5/ LW2,全球稳定增暖1.5℃/2℃时期(2031—2100年)。
Fig. 1 Time series of global annual mean surface temperature change relative to preindustrial period
图3 北太平洋冬季SSTA区域平均的标准差 注:矩形盒的上下边界分别是第1四分位数和第3四分位数,下同。
Fig. 3 Total (a), decadal (b), and interannual (c) standard deviation of winter area-average SSTA in North Pacific(Boxplot boundaries are set at the 25th and 75th percentiles)
图5 不同时期SSTA对PI时期PDO和NPGO空间模态回归的时间序列标准差
Fig. 5 Total (a, d), decadal (b, e), and interannual (c, f) standard deviation of time series by regressing SSTA in other periods onto PI period
图9 北太平洋各时期不同纬度Rossby波波速(a, b)和Rossby波跨海盆传播时间(c)
Fig. 9 Rossby wave speed and its change ratio at different latitudes in the North Pacific (a, b) and its basin-crossing time (c)
[1] | IPCC. Climate change 2007: the physical science basis [M]. Cambridge: Cambridge University Press, 2007: 996 |
[2] |
Kosaka Y, Xie S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013,501(7467):403
doi: 10.1038/nature12534 URL |
[3] | Mantua N J, Hare S R, Zhang Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulltin of American Meteorological Society, 1997,78(6):1069-1079 |
[4] |
Chen X Y, Tung K K. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014,345(6199):897-903
doi: 10.1126/science.1254937 URL pmid: 25146282 |
[5] |
England M H, McGregor S, Spence P, et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus[J]. Nature Climate Change, 2014,4(3):222-227
doi: 10.1038/NCLIMATE2106 URL |
[6] |
Liu B, Zhou T J. Atmospheric footprint of the recent warming slowdown[J]. Scientific Reports, 2017,7:40947
URL pmid: 28084457 |
[7] | Huang J B, Zhang X D, Zhang Q Y, et al. Recently amplified Arctic warming has contributed to a continual global warming trend[J]. Nature Climate Change, 2017,7(12):875-879 |
[8] | Di Lorenzo E, Schneider N, Cobb K M, et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change[J]. Geophysical Research Letters, 2008,35(8):L08607 |
[9] | Bond N A, Overland J E, Spillane M, et al. Recent shifts in the state of the North Pacific[J]. Geophysical Research Letters, 2003,30(23):2183 |
[10] |
Yeh S W, Kang Y J, Noh Y, et al. The North Pacific climate transitions of the winters of 1976/77 and 1988/89[J]. Journal of Climate, 2011,24(4):1170-1183
doi: 10.1175/2010JCLI3325.1 URL |
[11] |
吕庆平, 张立凤, 张铭. 冬季北太平洋优势气候模态的转移[J]. 气候变化研究进展, 2016,12(6):494-499.
doi: 10.12006/j.issn.1673-1719.2016.051 URL |
Lü Q P, Zhang L F, Zhang M. The climate shift of the dominant modes of North Pacific during winter[J]. Climate Change Research, 2016,12(6):494-499 (in Chinese) | |
[12] | Alexander G, Barnett T P. Interdecadal modulation of ENSO teleconnections[J]. Bulltin of American Meteorology Society, 1998,79(12):2715-2725 |
[13] |
Newman M, Compo G P, Alexander M A. ENSO-forced variability of the Pacific decadal oscillation[J]. Journal of Climate, 2002,16(23):3853-3857
doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2 URL |
[14] | 王东晓, 谢强, 刘赟, 等. 太平洋年代际海洋变率研究进展[J]. 热带海洋学报, 2003,22(1):76-83. |
Wang D X, Xie Q, Liu Y, et al. A research review of interdecadal climate variability in Pacific Ocean[J]. Journal of Tropical Oceanography, 2003,22(1):76-83 (in Chinese) | |
[15] |
杨修群, 朱益民, 谢倩, 等. 太平洋年代际振荡的研究进展[J]. 大气科学, 2004,28(6):979-992.
doi: 10.3878/j.issn.1006-9895.2004.06.15 URL |
Yang X Q, Zhu Y M, Xie Q, et al. Advances in studies of Pacific Decadal Oscillation[J]. Chinese Journal of Atmospheric Sciences, 2004,28(6):979-992 (in Chinese) | |
[16] | Di Lorenzo E, Schneider N, Cobb K M, et al. ENSO and the North Pacific Gyre Oscillation: an integrated view of Pacific decadal dynamics[R]. Atlanta GA: The 90th American Meteorological Society Annual Meeting, 2010 |
[17] | 张立凤, 吕庆平, 张永垂. 北太平洋涡旋振荡研究进展[J]. 地球科学进展, 2011,26(11):1001-1166. |
Zhang L F, Lv Q P, Zhang Y C. Advances in the study of North Pacific Gyre Oscillation[J]. Advance in Earth Science, 2011,26(11):1001-1166 (in Chinese) | |
[18] |
Saenko O A. Influence of global warming on baroclinic Rossby radius in the ocean: a model intercomparison[J]. Journal of Climate, 2006,19:1354-1360
doi: 10.1175/JCLI3683.1 URL |
[19] | Fang C F, Wu L X, Zhang X. The impact of global warming on the Pacific Decadal Oscillation and the possible mechanism[J]. Advances in Atmosphere Science, 2014,31(1):118-130 |
[20] | Zhang L P, Delworth T. Simulated response of the Pacific Decadal Oscillation to climate change[J]. Journal of Climate, 2016,29(16):5999-6018 |
[21] | Wang J M, Li C. Low-frequency variability and possible changes in the North Pacific simulated by CMIP5 models[J]. Journal of the Meteorological Society of Japan, 2017,95(3):199-211 |
[22] | Wu S, Liu Z Y, Cheng J, et al. Response of North Pacific and North Atlantic decadal variability to weak global warming[J]. Advances in Climate Change Research, 2018,9(2):1027-1039 |
[23] | Kay J E, Deser C, Philips A, et al. The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability[J]. Bulltin of American Meteorology Society, 2015,96:1333-1349 |
[24] | Sanderson B M, Xu Y Y, Tebldi C, et al. Community climate simulations to assess avoided impacts in 1.5℃ and 2℃ futures[J]. Earth System Dynamics, 2017,8(3):827-847 |
[25] | 翟盘茂, 余荣, 周佰铨, 等. 1.5℃增暖对全球和区域影响的研究进展[J]. 气候变化研究进展, 2017,13(5):465-472. |
Zhai P M, Yu R, Zhou B Q, et al. Research progress in impact of 1.5℃ global warming on global and regional scales[J]. Climate Change Research, 2017,13(5):465-472 (in Chinese) | |
[26] | Li D H, Zhou T J, Zou T L, et al. Extreme high temperature events over East Asia in 1.5℃ and 2℃ warmer futures: analysis of NCAR CESM low-warming experiments[J]. Geophysical Research Letters, 2018,2(12):123-134 |
[27] | 姜克隽. IPCC 1.5℃特别报告发布, 温室气体减排新时代的标志[J]. 气候变化研究进展, 2018,14(6):640-642. |
Jiang K J. IPCC special report on 1.5℃ warming: a starting of new era of global mitigation[J]. Climate Change Research, 2018,14(6):640-642 (in Chinese) | |
[28] | 赵宗慈, 罗勇, 黄建斌. 从CMIP5看全球1.5℃升温[J]. 气候变化研究进展, 2018,14(2):218-220. |
Zhao Z C, Luo Y, Huang J B. Understanding global warming of 1.5℃ from CMIP5[J]. Climate Change Research, 2018,14(2):218-220 (in Chinese) | |
[29] | Sanderson B M, O'Neill B C, Tebaldi C. What would it take to achieve the Paris temperature targets?[J]. Geophysical Research Letters, 2016,43(13):7133-7142 |
[30] | Deser C, Alexander M A, Timlin M S. Upper-ocean thermal variations in the North Pacific during 1970-1991[J]. Journal of Climate, 1996,9:1840-1855 |
[31] | Xie S P, Kunitani T, Kubokawa A, et al. Interdecadal thermocline variability in the North Pacific for 1958-97: AGCM simulation[J]. Journal of Physical Oceanography, 2000,30:2798-2813 |
[32] | North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982,110:699-706 |
[33] | Chelton D B, DeSzoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic Rossby radius of deformation[J]. Journal of Climate, 1998,28:433-460 |
[1] | 袁宇锋, 廖圳, 周佰铨, 翟盘茂. 全球气候变暖加剧背景下中国高影响区域性极端事件及归因研究进展[J]. 气候变化研究进展, 2025, 21(1): 44-55. |
[2] | 张诗妍, 胡永云, 李智博. 我国西北降水变化趋势和预估[J]. 气候变化研究进展, 2022, 18(6): 683-694. |
[3] | 于飞, 崔惠娟, 葛全胜. “一带一路”沿线国家的自主贡献中水资源相关适应措施评估[J]. 气候变化研究进展, 2022, 18(1): 70-80. |
[4] | 贾洋, 崔鹏. 西藏冰湖溃决灾害事件极端气候特征[J]. 气候变化研究进展, 2020, 16(4): 395-404. |
[5] | 王岱,孙银川,游庆龙. 太平洋年代际振荡对中国冬季最低气温年代际变化的贡献[J]. 气候变化研究进展, 2020, 16(1): 70-77. |
[6] | 吴芳营,游庆龙,谢文欣,张玲. 全球变暖1.5℃和2℃阈值时青藏高原气温的变化特征[J]. 气候变化研究进展, 2019, 15(2): 130-139. |
[7] | 袁瑞强, 王亚楠, 王鹏, 王仕琴, 陈宇宏. 降水集中度的变化特征及影响因素分析——以山西为例[J]. 气候变化研究进展, 2018, 14(1): 11-20. |
[8] | 朱再春, 刘永稳, 刘祯, 朴世龙. CMIP5模式对未来升温情景下全球陆地生态系统净初级生产力变化的预估[J]. 气候变化研究进展, 2018, 14(1): 31-39. |
[9] | 孔莹 王澄海. 全球升温1.5℃时北半球多年冻土及雪水当量的响应及其变化[J]. 气候变化研究进展, 2017, 13(4): 316-326. |
[10] | 段安民, 肖志祥, 吴国雄. 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016, 12(5): 374-381. |
[11] | 朱清照, 闻新宇. 中国CMIP5模式对未来北极海冰的模拟偏差[J]. 气候变化研究进展, 2016, 12(4): 276-285. |
[12] | 李红梅, 李林. 2℃全球变暖背景下青藏高原平均气候和极端气候事件变化[J]. 气候变化研究进展, 2015, 11(3): 157-164. |
[13] | 曾颖婷, 陆尔. 1961—2010年我国夏季总降水和极端降水的变化[J]. 气候变化研究进展, 2015, 11(2): 79-85. |
[14] | 沈柏竹 廉毅 张世轩 李尚锋. 北极涛动、极涡活动异常对北半球欧亚大陆冬季气温的影响[J]. 气候变化研究进展, 2012, 8(6): 434-439. |
[15] | 常跟应 李国敬 李曼 王朝平. 美国公众对全球变暖的认知和对气候政策的支持[J]. 气候变化研究进展, 2012, 8(4): 297-304. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 757
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 895
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|