[1] |
IPCC. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects [M]. Cambridge: Cambridge University Press, 2014
|
[2] |
吴绍洪, 高江波, 邓浩宇, 等. 气候变化风险及其定量评估方法[J]. 地理科学进展, 2018, 37(1): 28-35.
doi: 10.18306/dlkxjz.2018.01.004
|
|
Wu S H, Gao J B, Deng H Y, et al. Climate change risk and methodology for its quantitative assessment[J]. Progress in Geography, 2018, 37(1): 28-35 (in Chinese)
|
[3] |
IPCC. Climate change 2021: the physical science basis [M/OL]. 2021 [2021-08-22]. https://www.ipcc.ch/report/ar6/wg1/
|
[4] |
IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation [M]. Cambridge: Cambridge University Press, 2012: 65-108
|
[5] |
Reisinger A, Howden M, Vera C, et al. The concept of risk in the IPCC sixth assessment report: a summary of cross-working group discussions [R]. Geneva, Switzerland, 2020
|
[6] |
Raymond C, Horton R M, Zscheischler J, et al. Understanding and managing connected extreme events[J]. Nature Climate Change, 2020, 10: 611-621
doi: 10.1038/s41558-020-0790-4
URL
|
[7] |
Li G, Zhang X, Cannon A J, et al. Indices of Canada’s future climate for general and agricultural adaptation applications[J]. Climatic Change, 2018, 148: 249-263
doi: 10.1007/s10584-018-2199-x
URL
|
[8] |
Russo S, Sillmann J, Fischer E M. Top ten European heatwaves since 1950 and their occurrence in the coming decades[J]. Environmental Research Letters, 2015, 10: 124003
doi: 10.1088/1748-9326/10/12/124003
URL
|
[9] |
Wang X, Liu H, Gu M B, et al. Greater impacts from an extreme cold spell on tropical than temperate butterflies in southern China[J]. Ecosphere, 2016, 7: e01315
|
[10] |
Zhong S, Yu L, Ja W, et al. The impact of climate change on the characteristics of the frost-free season over the contiguous USA as projected by the NARCCAP model ensembles[J]. Climate Research, 2017, 72: 53-72
doi: 10.3354/cr01450
URL
|
[11] |
DeVries T, Holzer M, Primeau F. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning[J]. Nature, 2017, 542: 215-218. DOI: 10.1038/nature21068
doi: 10.1038/nature21068
URL
|
[12] |
Solomon S, Plattner G K, Knutti R, et al. Irreversible climate change due to carbon dioxide emissions[J]. Proceeding of The National Academy of Sciences of The United States of America, 2009, 106: 1704-1709. DOI: 10.1073/pnas.0812721106
doi: 10.1073/pnas.0812721106
|
[13] |
Saenger P. Mangrove ecology, silviculture and conservation[M]. Dordrecht: Springer, 2002
|
[14] |
Cavanaugh K C, Kellner J R, Forde A J, et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events[J]. Proceeding of The National Academy of Sciences of The United States of America, 2014, 111: 723-727
|
[15] |
Lenton T M, Held H, Kriegler E, et al. Tipping elements in the Earth’s climate system[J]. Proceeding of The National Academy of Sciences of The United States of America, 2008, 105: 1786-1793
|
[16] |
Rosier S H R, Reese R, Donges J F, et al. The tipping points and early warning indicators for Pine Island Glacier, West Antarctica[J]. Cryosphere, 2021, 15: 1501-1516
doi: 10.5194/tc-15-1501-2021
URL
|
[17] |
Feldmann J, Levermann A. Collapse of the West Antarctic ice sheet after local destabilization of the Amundsen basin[J]. Proceeding of The National Academy of Sciences of The United States of America, 2015, 112: 14191-14196
|
[18] |
Henry L G, McManus J F, Curry W B, et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation[J]. Science, 2016, 353: 470-474
doi: 10.1126/science.aaf5529
pmid: 27365315
|
[19] |
Hawkins E, Sutton R. Time of emergence of climate signals[J]. Geophysical Research Letters, 2012, 39: L01702
|
[20] |
Chadwick C, Gironás J, Vicuña S, et al. Estimating the local time of emergence of climatic variables using an unbiased mapping of GCMs: an application in semiarid and mediterranean chile[J]. Journal of Hydrometeorol, 2019, 20: 1635-1647
doi: 10.1175/JHM-D-19-0006.1
URL
|
[21] |
Zscheischler J, Martius O, Westra S, et al. A typology of compound weather and climate events[J]. Nature Reviews Earth & Environment, 2020, 1(7): 1-15
|
[22] |
Martius O, Pfahl S, Chevalier C. A global quantification of compound precipitation and wind extremes[J]. Geophysical Research Letters, 2016, 43: 7709-7717
doi: 10.1002/2016GL070017
URL
|
[23] |
Wahl T, Jain S, Bender J, et al. Increasing risk of compound flooding from storm surge and rainfall for major US cities[J]. Nature Climate Change, 2015, 5: 1093-1097
doi: 10.1038/nclimate2736
URL
|
[24] |
Gomez N, Weber M E, Clark P U, et al. Antarctic ice dynamics amplified by Northern Hemisphere sea-level forcing[J]. Nature, 2020, 587: 600-604
doi: 10.1038/s41586-020-2916-2
URL
|
[25] |
Vicente-Serrano S M, Lopez-Moreno J I, Beguería S, et al. Evidence of increasing drought severity caused by temperature rise in southern Europe[J]. Environmental Research Letters, 2014, 9(4): 044001
doi: 10.1088/1748-9326/9/4/044001
URL
|
[26] |
王文, 胡彦君, 徐川怡. 1961—2018年淮河流域热浪事件时空变化特征[J]. 地理科学, 2021, 41(5): 911-921.
doi: 10.13249/j.cnki.sgs.2021.05.019
|
|
Wang W, Hu Y J, Xu C Y. Spatial-temporal variations of heat waves in the Huaihe River basin from 1961 to 2018[J]. Scientia Geographica Sinica, 2021, 41(5): 911-921 (in Chinese)
|