[1] |
IPCC. Climate change 2021: the physical science basis [M]. Cambridge: Cambridge University Press, 2021
|
[2] |
Jan C M, William F L, Max W C, et al. Negative emissions. Part 1: research landscape and synjournal[J]. Environmental Research Letters, 2018, 13(6): 063001. DOI: 10.1088/1748-9326/aabf9b
doi: 10.1088/1748-9326/aabf9b
URL
|
[3] |
Rickels W, Reith F, Keller D, et al. Integrated assessment of carbon dioxide removal[J]. Earth’s Future, 2018, 6(3): 565-582. DOI: 10.1002/2017ef000724
doi: 10.1002/2017ef000724
URL
|
[4] |
Rogelj J, Popp A, Calvin K V, et al. Scenarios towards limiting global mean temperature increase below 1.5℃[J]. Nature Climate Change, 2018, 8(4): 325-332. DOI: 10.1038/s41558-018-0091-3
doi: 10.1038/s41558-018-0091-3
|
[5] |
The Royal Society. Geoengineering the climate: science, governance and uncertainty [R]. London: RS Policy Document 10/09, The Royal Society, 2009: 82
|
[6] |
IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013: 571-658. DOI: 10.1017/CBO9781107415324.016
doi: 10.1017/CBO9781107415324.016
|
[7] |
Keller D P, Lenton A, Scott V, et al. The carbon dioxide removal model intercomparison project (CDRMIP): rationale and experimental protocol for CMIP6[J]. Geoscientific Model Development, 2018, 11(3): 1133-1160. DOI: 10.5194/gmd-11-1133-2018
doi: 10.5194/gmd-11-1133-2018
URL
|
[8] |
Zickfeld K, Azevedo D, Mathesius S, et al. Asymmetry in the climate: carbon cycle response to positive and negative CO2 emissions[J]. Nature Climate Change, 2021, 11: 613-617. DOI: 10.1038/s41558-021-01061-2
doi: 10.1038/s41558-021-01061-2
URL
|
[9] |
Tokarska K B, Zickfeld K. The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change[J]. Environmental Research Letters, 2015, 10(9): 094013. DOI: 10.1088/1748-9326/10/9/094013
doi: 10.1088/1748-9326/10/9/094013
URL
|
[10] |
Jackson R B, Milne J, Littleton E W, et al. Simulating the Earth system response to negative emissions[J]. Environmental Research Letters, 2016, 11(9): 095012. DOI: 10.1088/1748-9326/11/9/095012
doi: 10.1088/1748-9326/11/9/095012
URL
|
[11] |
MacDougall A H. Reversing climate warming by artificial atmospheric carbon dioxide removal: can a holocene-like climate be restored?[J]. Geophysical Research Letters, 2013, 40(20): 5480-5485
doi: 10.1002/2013GL057467
URL
|
[12] |
Zickfeld K, MacDougall A H, Matthews H D. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions[J]. Environmental Research Letters, 2016, 11(5): 055006. DOI: 10.1088/1748-9326/11/ 5/055006
doi: 10.1088/1748-9326/11/ 5/055006
URL
|
[13] |
Schwinger J, Tjiputra J. Ocean carbon cycle feedbacks under negative emissions[J]. Geophysical Research Letters, 2018, 45(10): 5062-5070. DOI: 10.1029/2018gl077790
doi: 10.1029/2018gl077790
URL
|
[14] |
Jackson L C, Schaller N, Smith R S, et al. Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases[J]. Climate Dynamics, 2014, 42(11-12): 3323-3336
doi: 10.1007/s00382-013-1842-5
URL
|
[15] |
Sgubin G, Swingedouw D, Drijfhout S, et al. Multimodel analysis on the response of the AMOC under an increase of radiative forcing and its symmetrical reversal[J]. Climate Dynamics, 2015, 45(5-6): 1429-1450. DOI: 10.1007/s00382-014-2391-2
doi: 10.1007/s00382-014-2391-2
URL
|
[16] |
Jeltsch-Thömmes A, Stocker T F, Joos F. Hysteresis of the Earth system under positive and negative CO2 emissions[J]. Environmental Research Letters, 2020, 15(12): 124026. DOI: 10.1088/1748-9326/abc4af
doi: 10.1088/1748-9326/abc4af
URL
|
[17] |
Oschlies A, Pahlow M, Yool A, et al. Climate engineering by artificial ocean upwelling: channeling the sorcerer’s apprentice[J]. Geophysical Research Letters, 2010, 37(4): 1-5. DOI: 10.1029/2009gl041961
doi: 10.1029/2009gl041961
|
[18] |
Keller D P, Feng E Y, Oschlies A. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario[J]. Nature Communications, 2014, 5(1): 3304. DOI: 10.1038/ncomms4304
doi: 10.1038/ncomms4304
URL
|
[19] |
González M F, Ilyina T, Sonntag S, et al. Enhanced rates of regional warming and ocean acidification after termination of large-scale ocean alkalization[J]. Geophysical Research Letters, 2018, 45(14): 7120-7129. DOI: 10.1029/2018gl077847
doi: 10.1029/2018gl077847
URL
|
[20] |
Boyd P, Vivian C, Boettcher M, et al. High level review of a wide range of proposed marine geoengineering techniques [R/OL]. 2019 [2021-08-05]. http://www.gesamp.org/publications/high-level-review-of-a-wide-range-of-proposed-marine-geoengineering-techniques
|
[21] |
Keller D P. Marine climate engineering[M]//Salomon M, Markus T. Handbook on marine environment protection: science, impacts and sustainable management. Cham: Springer, 2019: 261-276. DOI: 10.1007/978-3-319-60156-4_13
doi: 10.1007/978-3-319-60156-4_13
|
[22] |
Hauck J, Köhler P, Wolf-Gladrow D, et al. Iron fertilization and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment[J]. Environmental Research Letters, 2016, 11(2): 024007. DOI: 10.1088/1748-9326/11/2/024007
doi: 10.1088/1748-9326/11/2/024007
URL
|
[23] |
Tran G T, Oschlies A, Keller D P. Comparative assessment of climate engineering scenarios in the presence of parametric uncertainty[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(4). DOI: 10.1029/2019ms001787
doi: 10.1029/2019ms001787
|
[24] |
Bach L T, Gill S J Rickaby R E M, et al. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems[J]. Frontiers in Climate, 2019, 1. DOI: 10.3389/fclim.2019.00007
doi: 10.3389/fclim.2019.00007
|
[25] |
Pete S, Steven J D, Felix C, et al. Biophysical and economic limits to negative CO2 emissions[J]. Nature Climate Change, 2016, 6(1): 42-45, 50. DOI: 10.1038/nclimate2870
doi: 10.1038/nclimate2870
URL
|
[26] |
NASEM (National Academies of Sciences, Engineering, and Medicine). Negative emissions technologies and reliable sequestration: a research agenda [M]. Washington, DC: The National Academies Press, 2019: 510. DOI: 10.17226/25259
doi: 10.17226/25259
|
[27] |
Fuss S, Lamb W F, Callaghan M W, et al. Negative emissions. Part 2: costs, potentials and side effects[J]. Environmental Research Letters, 2018, 13(6): 063002. DOI: 10.1088/1748-9326/aabf9f
doi: 10.1088/1748-9326/aabf9f
URL
|