|
Climate Change Research ›› 2020, Vol. 16 ›› Issue (5): 555-563.doi: 10.12006/j.issn.1673-1719.2020.008
• Cryosphere Service • Previous Articles Next Articles
YUN Xiao-Bo1,2(), TANG Qiu-Hong1,2(), XU Xi-Meng1, ZHOU Yuan-Yuan1, LIU Xing-Cai1, WANG Jie1,2, SUN Si-Ao3
Received:
2020-01-10
Revised:
2020-05-21
Online:
2020-09-30
Published:
2020-09-30
Contact:
TANG Qiu-Hong
E-mail:yunxiaobo17@mails.ucas.ac.cn;tangqh@igsnrr.ac.cn
YUN Xiao-Bo, TANG Qiu-Hong, XU Xi-Meng, ZHOU Yuan-Yuan, LIU Xing-Cai, WANG Jie, SUN Si-Ao. Impact of climate change on water resource cooperation between the upstream and downstream of the Lancang-Mekong River basin[J]. Climate Change Research, 2020, 16(5): 555-563.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2020.008
Fig. 3 Level curve of the joint probability distribution of the SPI-3 in upstream and downstream from 1982 to 2016 in the LMRB (The red frame area indicates the concurrent drought, the blue frame area indicates the concurrent wet, the green area indicates the uneven water resource period)
Table 1 Probability of concurrent drought, concurrent wet and uneven water resource period between the upstream and downstream of the LMRB in the near and far future periods
[1] | 何大明. 澜沧江-湄公河水文特征分析[J]. 云南地理环境研究, 1995,7(1):58-74. |
He D M. Analysis of hydrological characteristics of the Lancang-Mekong River basin[J]. Yunnan Geography Environment Research, 1995,7(1):58-74 (in Chinese) | |
[2] | Shimizu K, Masumoto T, Pham T H. Factors impacting yields in rain-fed paddies of the lower Mekong River basin[J]. Paddy and Water Environment, 2006,4(3):145-151 |
[3] | Rees H G, Collins D N. Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming[J]. Hydrological Processes, 2006,20(10):2157-2169 |
[4] | Hoang L P, Lauri H, Kummu M, et al. Mekong River flow and hydrological extremes under climate change[J]. Hydrology and Earth System Sciences, 2016,20(7):3027-3041 |
[5] | Kiem A S, Ishidaira H, Hapuarachchi H P, et al. Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCM[J]. Hydrological Processes, 2008,22(9):1382-1394 |
[6] | Thilakarathne M, Sridhar V. Characterization of future drought conditions in the Lower Mekong River basin[J]. Weather and Climate Extremes, 2017,17:47-58 |
[7] | 汤秋鸿, 兰措, 苏凤阁, 等. 青藏高原河川径流变化及其影响研究进展[J]. 科学通报, 2019,64:2807-2821. |
Tang Q H, Lan C, Sun F G, et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts[J]. Chinese Science Bulletin, 2019,64:2807-2821 | |
[8] | 汤秋鸿, 刘星才, 周园园, 等. “亚洲水塔”变化对下游水资源的连锁效应[J]. 中国科学院院刊, 2019,34(11):1306-1312. |
Tang Q H, Liu X C, Zhou Y Y, et al. Cascading impacts of Asian water tower change on downstream water systems[J]. Bulletin of Chinese Academy of Sciences, 2019,34(11):1306-1312 (in Chinese) | |
[9] |
Meyfroidt L P. Global land use change, economic globalization, and the looming land scarcity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(9):3465-3472
doi: 10.1073/pnas.1100480108 URL pmid: 21321211 |
[10] | Huntington T G. Evidence for intensification of the global water cycle: review and synjournal[J]. Journal of Hydrology, 2006,319(1-4):0-95 |
[11] |
Milly P C D, Wetherald R T, Dunne K A, et al. Increasing risk of great floods in a changing climate[J]. Nature, 2002,415(6871):514-517
doi: 10.1038/415514a URL pmid: 11823857 |
[12] | 汤秋鸿. 全球变化水文学: 陆地水循环与全球变化[J]. 中国科学: 地球科学, 2020,50(3):436-438. |
Tang Q H. Global change hydrology: terrestrial water cycle and global change[J]. Scientia Sinica Terrae, 2020,50(3):436-438 (in Chinese) | |
[13] | Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2012,3(1):52-58 |
[14] | 王书霞, 张利平, 李意, 等. 气候变化情景下澜沧江流域极端洪水事件研究[J]. 气候变化研究进展, 2019,15(1):27-36. |
Wang S X, Zhang L P, Li Y, et al. Extreme flood in the Lancang River basin under climate change[J]. Climate Change Research, 2019,15(1):27-36 (in Chinese) | |
[15] | 刘波, 肖子牛. 澜沧江流域1951—2008年气候变化和2010—2099年不同情景下模式预估结果分析[J]. 气候变化研究进展, 2010,6(3):170-174. |
Liu B, Xiao Z N. Observed (1951-2008) and projected (2010-2099) climate change in the Lancang River basin[J]. Climate Change Research, 2010,6(3):170-174 (in Chinese) | |
[16] | Long D, Scanlon B R, Longuevergne L, et al. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas[J]. Geophysical Research Letters, 2013,40(13):3395-3401 |
[17] | Munia H, Guillaume J H A, Mirumachi N, et al. Water stress in global transboundary river basins: significance of upstream water use on downstream stress[J]. Environmental Research Letters, 2016,11(1):014002 |
[18] | 何大明, 张家桢. 澜沧江-湄公河流域持续发展与水资源整体多目标利用研究[J]. 中国科学基金, 1996 (3):200-206. |
He D M, Zhang J Z. Research on the sustainable development of the Lancang-Mekong River basin and the multi-objective utilization of water resources[J]. China Science Foundation, 1996 (3):200-206 (in Chinese) | |
[19] | Pech S, Sunada K. Population growth and natural-resources pressures in the Mekong River basin[J]. AMBIO: A Journal of the Human Environment, 2008,37(3):219-224 |
[20] |
Sheffield J, Wood E F, Roderick M L. Little change in global drought over the past 60 years[J]. Nature, 2012,491(7424):435-438
doi: 10.1038/nature11575 URL pmid: 23151587 |
[21] |
Sheffield J, Goteti G, Wood E F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling[J]. Journal of Climate, 2006,19(13):3088-3111
doi: 10.1175/JCLI3790.1 URL |
[22] | MRC (Mekong River Commission). Hydrometeorological database of the Mekong River commission [R]. Vientiane, Lao PDR: Mekong River Commission, 2011 |
[23] | McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[J]. American Meteorological Society, 1993: 179-183 |
[24] |
Wu H, Svoboda M D, Hayes M J, et al. Appropriate application of the standardized precipitation index in arid locations and dry seasons[J]. International Journal of Climatology, 2010,27(1):65-79
doi: 10.1002/(ISSN)1097-0088 URL |
[25] | Wilks D S. Interannual variability and extreme-value characteristics of several stochastic daily precipitation models[J]. Agricultural and Forest Meteorology, 1999,93(3):153-169 |
[26] | Nelsen R B. An introduction to Copulas (Springer series in statistics)[M]. New York, USA: Springer, 2006 |
[27] | Huard D, Evin G, Favre A C. Bayesian copula selection[J]. Computational Statistics & Data Analysis, 2006,51(2):809-822 |
[28] |
Qu X, Huang G, Zhou W. Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations[J]. Theoretical and Applied Climatology, 2014,117(1-2):123-131
doi: 10.1007/s00704-013-0995-9 URL |
[29] | Thompson J R, Green A J, Kingston D G. Potential evapotranspiration-related uncertainty in climate change impacts on river flow: an assessment for the Mekong River basin[J]. Journal of Hydrology, 2014,510:259-279 |
[30] | Frieler K, Lange S, Piontek F, et al. Assessing the impacts of 1.5℃ global warming: simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)[J]. Geoscientific Model Development, 2017,12:4321-4345 |
[31] |
Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998
doi: 10.1016/j.jhydrol.2017.04.013 URL pmid: 32801391 |
[32] | 高峰, 蔡万园, 张玉虎, 等. 5种CMIP5模拟降水数据在中国的适用性评估[J]. 水土保持研究, 2017,24(6). |
Gao F, Cai W Y, Zhang Y H, et al. Evaluation on the applicability of 5 kinds of CMIP5 simulated precipitation data in China[J]. Research of Soil and Water Conservation, 2017,24(6) (in Chinese) | |
[33] | 陈晓晨, 徐影, 许崇海, 等. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014,10(3):217-225. |
Chen X C, Xu Y, Xu C H, et al. Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Advances in Climate Change Research, 2014,10(3):217-225 (in Chinese) | |
[34] | IPCC. Climate change 2014: impacts, adaptation, and vulnerability [M]. Cambridge: Cambridge University Press, 2014: 1132 |
[35] | IFAD (International Fund for Agricultural Development), Cambodia Environmental and Climate Change Assessment. Prepared for IFAD’s country strategic opportunities programmer 2013-2018 [R]. Rome, Italy: IFAD, 2018 |
[36] |
Smajgl A, Toan T Q, Nhan D K, et al. Responding to rising sea levels in the Mekong Delta[J]. Nature Climate Change, 2015
doi: 10.1038/s41558-017-0032-6 URL pmid: 29375673 |
[37] | Valbo-Jørgensen J, Coates D, Hortle K. Chapter 8: fish diversity in the Mekong River basin[J]. The Mekong, 2009: 161-196 |
[38] | Lu X X, Li S, Kummu M, et al. Observed changes in the water flow at Chiang Saen in the lower Mekong: impacts of Chinese dams?[J]. Quaternary International, 2014,336:145-157 |
[39] | Cronin R. Mekong dams and the perils of peace[J]. Survival, 2009,51(6):147-160 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|