[1] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 | [2] | IPCC. Climate change 2014: impacts, adaptation, and vulnerability [M]. Cambridge: Cambridge University Press, 2014 | [3] | Keith D W . Geoengineering the climate: history and prospect[J]. Annual Review of Energy and the Environment, 2000,25, 245-284 | [4] | National Research Council. Climate Intervention [M]. Washington DC: National Academies Press, 2015 | [5] | Le Quéré C, Andrew R M, Friedlingstein R M , et al . Global carbon budget 2018[J]. Earth System Science Data, 2018,10:2141-2194 | [6] | Eisaman M D, Parajuly K, Tuganov A , et al. CO2 extraction from seawater using bipolar membrane electrodialysis[J]. Energy& Environmental Science, 2012,5:7346. DOI: 0.1039/c2ee03393c | [7] | Boysen L R, Lucht W, Gerten D . Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential[J]. Global Change Biology, 2017,23:4303-4317 | [8] | Cao L, Caldeira K . Atmospheric carbon dioxide removal: long-term consequences and commitment[J]. Environmental Research Letter, 2010,5:24011. DOI: 10.1088/1748-9326/5/2/024011 | [9] | Keller D P, Feng E Y, Oschlies A . Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario[J]. Nature Communication, 2014,5:3304. DOI: 10.1038/ncomms4304 | [10] | Keller D P, Lenton A, Littleton E W , et al. The effects of Carbon Dioxide Removal on the carbon cycle[J]. Current Climate Change Reports, 2018,4:250-265 | [11] | Harper A B, Powell T, Cox P M , et al. Land-use emissions play a critical role in land-based mitigation for Paris climate targets[J]. Nature Communication, 2018,9:2938. DOI: 10.1038/s41467-018-05340-z | [12] | Muri H . The role of large-scale BECCS in the pursuit of the 1.5℃ target: an Earth system model perspective[J]. Environmental Research Letter, 2018,13:044010. DOI: 10.1088/1748-9326/aab324 | [13] | Smith P, Davis S J, Creutzig F , et al. Biophysical and economic limits to negative CO2 emissions[J]. Nature Climate Change, 2015,6:42-50 | [14] | Bauer N, Calvin K, Emmerling J , et al. Shared socio-economic pathways of the energy sector: quantifying the narratives[J]. Global Environmental Change, 2017,42:316-330 | [15] | Jones C D, Ciais P, Davis S J , et al. Simulating the Earth system response to negative emissions[J]. Environmental Research Letter, 2016,11:95012. DOI: 10.1088/1748-9326/11/9/095012 | [16] | Schwinger J, Tjiputra J F . Ocean carbon cycle feedbacks under negative emissions[J]. Geophysical Research Letters, 2018,45:5062-5070 | [17] | Rickels W, Reith F, Keller D , et al. Integrated assessment of Carbon Dioxide Removal[J]. Earth’s Future, 2018,6:565-582 | [18] | Tokarska K B, Zickfeld K . The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change[J]. Environmental Research Letter, 2015,10:94013. DOI: 10.1088/1748-9326/10/9/094013 | [19] | Boucher O, Halloran P R, Burke E J , et al. Reversibility in an Earth system model in response to CO2 concentration changes[J]. Environmental Research Letter, 2012,7:24013. DOI: 10.1088/1748-9326/7/2/024013 | [20] | Lenton T M, Held H, Kriegler E , et al. Tipping elements in the Earth’s climate system[J]. Proceedings of the National Academy of Sciences of the USA, 2008,105:1786-1793 | [21] | Lenton A, Keller D, Pfister P . How will Earth respond to plans for Carbon Dioxide Removal?[J]. EOS, 2017,98. DOI: 10.1029/2017EO068385 | [22] | Keller D, Lenton A, Scott V , et al. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6[J]. Geoscientific Model Development, 2018,11:1133-1160 | [23] | Eyring V, Bony S, Meehl G A , et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016,9:1937-1958 | [24] | Jones C D, Arora V, Friedlingstein P , et al. C4MIP: the Coupled Climate-Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6[J]. Geoscientific Model Development, 2016,9:2853-2880 | [25] | Lawrence D M, Hurtt G C, Arneth A , et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design[J]. Geoscientific Model Development, 2016,9:2973-2998 | [26] | O’Neill B C, Tebaldi C, van Vuuren D P , et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016,9:3461-3482 | [27] | Ji D Y, Wang L, Feng J M , et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1[J]. Geoscientific Model Development, 2014,7:2039-2064 | [28] | Moore J C, Grinsted A, Guo X , et al. Atlantic hurricane surge response to geoengineering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112:13794-13799 | [29] | Cao L, Duan L, Bala G , et al. Simulated long-term climate response to idealized solar geoengineering[J]. Geophysical Research Letters, 2016,43:2209-2217 | [30] | Ji D Y, Fang S, Curry C L , et al. Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering[J]. Atmospheric Chemistry and Physics, 2018,18:10133-10156 | [31] | Duan L, Cao L, Bala G , et al. Comparison of the fast and slow climate response to three radiation management geoengineering schemes[J]. Journal of Geophysical Research: Atmospheres, 2018,123:11980-12001 |
|