[1] | Eyring V, Bony S, Meehl G A , et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016,9(5):1937-1958 | [2] | 周天军, 邹立维, 吴波 , 等. 中国地球气候系统模式研究进展: CMIP计划实施近20年回顾[J]. 气象学报, 2014,72(5):892-907. | [2] | Zhou T J, Zou L W, Wu B , et al. Development of Earth/climate models in China: a review from the Coupled Model Intercomparison Project perspective[J]. Acta Meteorologica Sinica, 2014,72(5):892-907 (in Chinese) | [3] | Hurrell J W, Holland M M, Gent P R , et al. The community Earth system model: a framework for collaborative research[J]. Bulletin of the American Meteorological Society, 2013,94(9):1339-1360 | [4] | Fu H H, Liao J F, Xue W , et al. Refactoring and optimizing the Community Atmosphere Model (CAM) on the Sunway TaihuLight Supercomputer[C]. USA: IEEE, 2016 | [5] | Neale R B, Gettelman A, Park S , et al. Description of the NCAR Community Atmosphere Model (CAM 5.0) [Z/OL]. 2012 [2019- 07- 15]. | [6] | Zhang G J, Mcfarlane N A . Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model[J]. Atmosphere-Ocean, 1995,33(3):407-446 | [7] | Plant R S, Craig G C . A stochastic parameterization for deep convection based on equilibrium statistics[J]. Journal of the Atmospheric Sciences, 2008,65(1):87-105 | [8] | Song X, Zhang G J . Microphysics parameterization for convective clouds in a global climate model: description and single-column model tests[J]. Journal of Geophysical Research, 2011,116(D2):D02201 | [9] | Qin Y, Lin Y, Xu S , et al. A diagnostic PDF cloud scheme to improve subtropical low clouds in NCAR Community Atmosphere Model (CAM5)[J]. Journal of Advances in Modeling Earth Systems, 2018,10(2):320-341 | [10] | Park S, Bretherton C S, Rasch P J . Integrating cloud processes in the Community Atmosphere Model, version 5[J]. Journal of Climate, 2014,27(18):6821-6856 | [11] | Qin Y, Lin Y . Alleviated double ITCZ problem in the NCAR CESM1: a new cloud scheme and the working mechanisms[J]. Journal of Advances in Modeling Earth Systems, 2018,10(9):2318-2332 | [12] | Morrison H, Gettelman A . A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: description and numerical tests[J]. Journal of Climate, 2008,21(15):3642-3659 | [13] | Zhao X, Lin Y, Peng Y , et al. A single ice approach using varying ice particle properties in global climate model microphysics[J]. Journal of Advances in Modeling Earth Systems, 2017,9(5):2138-2157 | [14] | Zhang F, Li J . Doubling-adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization[J]. Journal of the Atmospheric Sciences, 2013,70(10):3084-3101 | [15] | Li J, Ramaswamy V . Four-stream spherical harmonic expansion approximation for solar radiative transfer[J]. Journal of the Atmospheric Sciences, 1996,53(8):1174-1186 | [16] | Beljaars A C M, Brown A R, Wood N . A new parametrization of turbulent orographic form drag[J]. Quarterly Journal of the Royal Meteorological Society, 2004,130(599):1327-1347 | [17] | Liang Y, Wang L, Zhang G J , et al. Sensitivity test of parameterizations of subgrid-scale orographic form drag in the NCAR CESM1[J]. Climate Dynamics, 2017,48(9-10):3365-3379 | [18] | Stevens B, Fiedler S, Kinne S , et al. MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6[J]. Geoscientific Model Development, 2017,10(1):433-452 | [19] | Xu S, Wang B, Liu J . On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models[J]. Geoscientific Model Development, 2015,8(10):3471-3485 | [20] | Hu Y, Huang X, Baker A H , et al. Improving the scalability of the ocean barotropic solver in the community Earth system model [C]. New York: ACM Press, 2015: 1-12 | [21] | Huang X, Tang Q, Tseng Y , et al. P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0[J]. Geoscientific Model Development, 2016,9(11):4209-4225 | [22] | Xu F . Test and evaluation of a simple parameterization to enhance air-sea coupling in a global coupled model[J]. Satellite Oceanography and Meteorology, 2018,3(3) | [23] | Shangguan W, Dai Y, Duan Q , et al. A global soil data set for earth system modeling[J]. Journal of Advances in Modeling Earth Systems, 2014,6(1):249-263 | [24] | Yang K, Koike T, Ishikawa H , et al. Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization[J]. Journal of Applied Meteorology and Climatology, 2008,47(1):276-290 | [25] | Luo Y, Shi Z, Lu X , et al. Transient dynamics of terrestrial carbon storage: mathematical foundation and its applications[J]. Biogeosciences, 2017,14:145-161 | [26] | Liu L, Yang G, Wang B , et al. C-coupler1: a Chinese community coupler for Earth system modeling[J]. Geoscientific Model Development, 2014,7(5):2281-2302 | [27] | Liu L, Zhang C, Li R, Wang B, Yang G . C-coupler2: a flexible and user-friendly community coupler for model coupling and nesting[J]. Geoscientific Model Development, 2018,11:3557-3586. DOI: 10.5194/gmd-11-3557-2018 | [28] | Qiao F L, Zhao W, Yin X Q , et al. A highly effective global surface wave numerical simulation with ultra-high resolution [C]. NJ, USA: IEEE Press Piscataway, 2016. DOI: 10.1109/SC.2016.4 | [29] | Xu H, Li S, Bai Y , et al. A collaborative analysis framework for distributed gridded environmental data[J]. Environmental Modelling & Software, 2019,111:324-339 |
|