[1] | Trenberth K. Climate system modeling [M]. Cambridge: Cambridge University Press, 1992: 1-50 | [2] | IPCC. Climate change 2007: the physical science basis [M]. Cambridge: Cambridge University Press, 2007: 590-662 | [3] | Lambert S J, Boer G J . CMIP1 evaluation and intercomparison of coupled climate models[J]. Climate Dynamics, 2001,17:83-106 | [4] | Covey C, AchutaRao K M, Cubasch U , et al. An overview of results from the Coupled Model Intercomparison Project[J]. Global and Planetary Change, 2003,37:103-133 | [5] | Gerald A M, Covey C, Mcavaney B , et al. Overview of the Coupled Model Intercomparison Project[J]. Bulletin of the American Meteorological Society, 2005,86(1):89-93 | [6] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 | [7] | Eyring V, Bony S, Meehl G A , et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016,9:1937-1958 | [8] | 周天军, 邹立维, 吴波 , 等. 中国地球系统模式研究进展: CMIP计划实施近20年回顾[J]. 气象学报, 2014,72(5):892-907. | [8] | Zhou T J, Zou L W, Wu B , et al. Development of Earth/climate system models in China: a review from the Coupled Model Intercomparison Project perspective[J]. Acta Meteorologica Sinica, 2014,72(5):892-907 (in Chinese) | [9] | Taylor K E, Stouffer R J, Meeh G A . An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012,93(4):485-498 | [10] | Yu Y, Zhi H, Wang B , et al. Coupled model simulations of climate changes in the 20th century and beyond[J]. Advances in Atmospheric Sciences, 2008,25(4):641-654 | [11] | Yu Y, Zheng W, Wang B , et al. Versions g1.0 and g1.1 of the LASG/IAP Flexible Global Ocean-Atmosphere-Land System model[J]. Advances in Atmospheric Sciences, 2011,28(1):99-117 | [12] | Li L J, Lin P F, Yu Y Q , et al. The Flexible Global Ocean-Atmosphere-Land System model, grid-point version 2: FGOALS-g2[J]. Advances in Atmospheric Sciences, 2013,30:543-560 | [13] | Bellenger H, Guilyardi E, Leloup J , et al. ENSO representation in climate models: from CMIP3 to CMIP5[J]. Climate Dynamics, 2014,42:1999-2018 | [14] | Chen L, Yu Y, Zheng W . Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2[J]. Climate Dynamics, 2016,47:2617-2634 | [15] | Zhou T J, Wang B, Yu Y Q , et al. The FGOALS climate system model as a modeling tool for supporting climate sciences: an overview[J]. Earth and Planetary Physics, 2018,2(4):276-291 | [16] | Li L J, Wang B, Zhang G J . The role of moist processes in shortwave radiative feedback during ENSO in the CMIP5 models[J]. Journal of Climate, 2015,28:9892-9908 | [17] | Sun W Q, Li L J, Wang B . Reducing the biases in shortwave cloud radiative forcing in tropical and subtropical regions from the perspective of boundary layer processes science[J]. China Earth Sciences, 2016,59(7):1427-1439 | [18] | Wang B, Wan H, Ji Z Z , et al. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods[J]. Science China: Mathematics, 2004,47:4-21 | [19] | Yu R C . A two-step shape-preserving advection scheme[J]. Advances in Atmospheric Sciences, 1994,11:79-90 | [20] | Li L J, Wang B, Dong L , et al. Evaluation of Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2)[J]. Advances in Atmospheric Sciences, 2013,30:855-867 | [21] | Stevens B, Fiedler S, Kinne S , et al. MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6[J]. Geoscientific Model Development, 2017,10(1):433-452 | [22] | Durack P, Tayor K, Smith S , et al. 2018 CMIP6 forcing dataset summary [R/OL]. 2018 [ 2019- 01- 04]. | [23] | Xie Z, Liu S, Zeng Y , et al. A high-resolution land model with groundwater lateral flow, water use and soil freeze-thaw front dynamics and its applications in an endorheic basin[J]. Journal of Geophysical Research- Atmospheres, 2018. DOI: 10.1029/2018JD028369 | [24] | Oleson K W, Lawrence D M, Gordon B , et al. Technical description of version 4.5 of the Community Land Model (CLM) [R/OL]. 2013 [2019-01-04]. | [25] | Xie Z, Di Z, Luo Z , et al. A quasi-three-dimensional variably saturated groundwater flow model for climate modeling[J]. Journal of Hydrometeorology, 2012,13:27-46 | [26] | Zeng Y, Xie Z, Liu S , et al. Global land surface modeling including lateral groundwater flow[J]. Journal of Advances in Modeling Earth Systems, 2018,10:1882-1900 | [27] | Zeng Y, Xie Z, Yu Y , et al. Effects of anthropogenic water regulation and groundwater lateral flow on land processes[J]. Journal of Advances in Modeling Earth Systems, 2016,8:1106-1131 | [28] | Zou J, Xie Z, Yu Y , et al. Climatic reponses to anthropogenic groundwater exploitation: a case study of the Haihe River basin, northern China[J]. Climate Dynamics, 2014,42:2125-2145 | [29] | Gao J, Xie Z, Wang A , et al. Numerical simulation based on two-directional freeze and thaw algorithm for thermal diffusion model[J]. Applied Mathematics and Mechanics, 2016,37(11):1467-1478 | [30] | Liu S, Xie Z, Zeng Y , et al. Effects of anthropogenic nitrogen discharge on dissolved inorganic nitrogen transport in global rivers[J]. Global Change Biology, 2019,25:1493-1513 | [31] | 俞永强, 唐绍磊, 刘海龙 , 等. 任意正交曲线坐标系下的海洋模式动力框架的发展与评估[J]. 大气科学, 2018,42(4):877-889. | [31] | Yu Y Q, Tang S L, Liu H L , et al. Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate[J]. Chinese Journal of Atmospheric Sciences, 2018,42(4):877-889 (in Chinese) | [32] | Wu F, Liu H, Li W , et al. Effect of adjusting vertical resolution on the eastern equatorial Pacific cold tongue[J]. Acta Meteorologica Sinica, 2005,24:1-12 | [33] | Craig A, Vertenstein M, Jacob R . A new flexible coupler for Earth system modeling developed for CCSM4 and CESM1[J]. International Journal for High Performance Computing Applications, 2012,26(1):31-42 | [34] | Gillett N P, Shiogama H, Funke B , et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6[J]. Geoscientific Model Development, 2016,9:3685-3697 | [35] | Boer G J, Smith D M, Cassou C , et al. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6[J]. Geoscientific Model Development, 2016,9:3751-3777 | [36] | Zhou T J, Turner A G, Kinter J L , et al. GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project[J]. Geoscientific Model Development, 2016,9:3589-3604 | [37] | Hurk B, Kim H, Krinner G , et al. LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project: aims, setup and expected outcome[J]. Geoscientific Model Development, 2016,9:2809-2832 | [38] | Griffies S M, Danabasoglu G, Durack P J , et al. OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project[J]. Geoscientific Model Development, 2016,9:3231-3296 | [39] | Kageyama M, Braconnot P, Harrison S P , et al. PMIP4-CMIP6: the contribution of the Paleoclimate Modelling Intercomparison Project to CMIP6[J]. Geoscientific Model Development Discussion, 2016,11(3):1033-1057 | [40] | Notz D, Jahn A, Holland M , et al. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations[J]. Geoscientific Model Development, 2016,9:3427-3446 | [41] | O’Neill B C, Tebaldi C, Vuuren D P , et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016,9:3461-3482 | [42] | Matthes K, Funke B, Andersson M , et al. Solar forcing for CMIP6 (v3.2)[J]. Geoscientific Model Development, 2017,10:2247-2302 | [43] | Li L J, Lin P F, Yu Y Q , et al. The Flexible Global Ocean-Atmosphere-Land System Model, Grid-point version 2: FGOALS-g2[M]. Springer-Verlag Berlin Heidelberg, 2014: 39-43 |
|