气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (6): 730-743.doi: 10.12006/j.issn.1673-1719.2021.005
收稿日期:
2021-01-06
修回日期:
2021-03-10
出版日期:
2021-11-30
发布日期:
2021-11-26
通讯作者:
徐影
作者简介:
胡一阳,男,硕士研究生, 基金资助:
HU Yi-Yang1,2(), XU Ying2(), LI Jin-Jian1, HAN Zhen-Yu2
Received:
2021-01-06
Revised:
2021-03-10
Online:
2021-11-30
Published:
2021-11-26
Contact:
XU Ying
摘要:
基于参与CMIP6高分辨率模式比较计划(HighResMIP)9个模式组的18个全球气候模式模拟数据,通过与CN05.1观测资料的对比,评估了不同分辨率气候模式对中国区域1961—2014年降水特征的模拟能力。结果表明:低、高分辨率模式均能模拟出中国区域多年平均降水的总体空间分布特征,以及降水冬弱夏强的季节变化特征,但对降水的模拟都存在系统性偏多的误差;与低分辨率模式结果相比,高分辨率模式对降水空间分布的模拟有明显改善,在青藏高原、华北、华南地区降水模拟的系统性偏差明显减小;与低分辨率模式结果相比,高分辨率模式对年循环变化的模拟效果也更好,多年平均1月及9—12月逐月降水以及年降水的模拟误差均有所减小。对于年际、年代际的前两个主导空间模态,低、高分辨率模式大多无法模拟年代际的第一模态,但对于年际前两个模态以及年代际第二模态,分辨率提高可使半数左右模式组的模拟能力有所改善。
胡一阳, 徐影, 李金建, 韩振宇. CMIP6不同分辨率全球气候模式对中国降水模拟能力评估[J]. 气候变化研究进展, 2021, 17(6): 730-743.
HU Yi-Yang, XU Ying, LI Jin-Jian, HAN Zhen-Yu. Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China[J]. Climate Change Research, 2021, 17(6): 730-743.
图1 观测与模拟的1961—2014年平均年降水量分布及二者相对偏差分布 注:打点处代表相对偏差的同号率>78%。
Fig. 1 Observation (a) and low-resolution MME (b) and high-resolution MME (c) of mean annual precipitation, and the relative deviation (d, e) between simulated results and observation in 1961-2014 (The dots indicate that 78% or more of models agree on the sign of biases)
图2 低分辨率模式(a) 与高分辨率模式(b)模拟的1961—2014年平均年总降水与观测值的相对偏差分布 注:序号对应表1的模式序号。
Fig. 2 The spatial distribution of model biases in mean annual precipitation in 1961-2014. (a) Low-resolution models, (b) high-resolution models (The number corresponds to Table 1)
图3 低分辨率与高分辨率模式模拟1961—2014年中国地区多年平均的逐月降水分布盒须图 注:紫色盒须对应低分辨率模式,黑色盒须对应高分辨率模式;箱体上下线代表75%与25%的分位数。
Fig. 3 Box-and-whisker plots for multi-year average monthly precipitation distribution in China simulated by low-resolution models (purple) and high-resolution models (black) during 1961-2014 (The upper and lower boundaries of the box represent the 75% and 25% quantiles respectively)
图4 低分辨率(a)、高分辨率(b)模式模拟1961—2014年中国地区多年平均季节、年降水相对于观测值的Taylor图 注:0代表MME,1~9对应表1的模式序号。
Fig. 4 Taylor diagram for low-resolution models (a), high-resolution models (b) simulated seasonal and annual precipitation in China during 1961-2014 compared with the observation (The different colors represent the season, and the different numbers represent the model)
图5 观测(a)以及低分辨率模式(b)与高分辨模式(c)模拟的1961—2014年中国东部夏季降水年际变化模态EOF1 注:序号0为MME,其余序号对应表1的模式序号;打点表示回归计算可通过95%信度检验,绿色框表示模拟与观测间存在正的空间相关且可通过95%信度检验。
Fig. 5 Low-resolution models (b) and high-resolution models (c) simulated EOF1 of interannual variation of summer precipitation spatial distribution in eastern China during 1961-2014 and observation (a). (b0 and c0 are MME. Dot area in panels indicates that they are all statistically significant at the 95% confidence level. The green box indicates that the spatial positive correlation with observation is statistically significant at the 95% confidence level)
表2 年际变化EOF1和EOF2在各模式组与观测之间的空间相关系数
Table 2 The spatial correlation coefficients of the first and second dominant mode of interannual variation by each model groups and observation
表3 年代际变化EOF1和EOF2在各模式组与观测之间的空间相关系数
Table 3 The spatial correlation coefficients of the first and second dominant mode of interdecadal variation by each mode model groups and observation
[1] |
黄建平, 陈文, 温之平, 等. 新中国成立70年以来的中国大气科学研究: 气候与气候变化篇[J]. 中国科学: 地球科学, 2019 (10): 1607-1640. DOI: CNKI:SUN:JDXK.0.2019-10-007.
doi: CNKI:SUN:JDXK.0.2019-10-007 |
Huang J P, Chen W, Wen Z P, et al. Atmospheric science research in China since the founding of new China 70 years: climate and climate change[J]. Scientia Sinica: Terrae, 2019 (10): 1607-1640. DOI: CNKI:SUN:JDXK.0.2019-10-007 (in Chinese)
doi: CNKI:SUN:JDXK.0.2019-10-007 |
|
[2] |
Li D, Zou L W, Zhou T J. Extreme climate event changes in China in the 1.5 and 2℃ warmer climates: results from statistical and dynamical downscaling[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(18). DOI: 10.1029/2018JD028835
doi: 10.1029/2018JD028835 |
[3] |
许崇海, 沈新勇, 徐影. IPCC AR4模式对东亚地区气候模拟能力的分析[J]. 气候变化研究进展, 2007, 3(5): 287-292. DOI: 10.3969/j.issn.1673-1719.2007.05.008.
doi: 10.3969/j.issn.1673-1719.2007.05.008 |
Xu C H, Shen X Y, Xu Y. An analysis of climate change in East Asia by using the IPCC AR4 simulations[J]. Climate Change Research, 2007, 3(5): 287-292. DOI: 10.3969/j.issn.1673-1719.2007.05.008 (in Chinese)
doi: 10.3969/j.issn.1673-1719.2007.05.008 |
|
[4] |
陈晓晨. CMIP5全球气候模式对中国降水模拟能力的评估[D]. 北京: 中国气象科学研究院, 2014. DOI: CNKI:CDMD:2.1014.215199.
doi: CNKI:CDMD:2.1014.215199 |
Chen X C. Assessment of the precipitation over China simulated by CMIP5 multi-models[D]. Beijing: Chinese Academy of Meteorological Sciences, 2014. DOI: CNKI:CDMD:2.1014.215199 (in Chinese)
doi: CNKI:CDMD:2.1014.215199 |
|
[5] |
Shaffrey L C, Stevens I, Norton W, et al. UK HiGEM: the new UK high-resolution global environment model-model description and basic evaluation[J]. Journal of Climate, 2009, 22(8): 1861-1896. DOI: 10.1175/2008JCLI2508.1
doi: 10.1175/2008JCLI2508.1 URL |
[6] |
Bony S, Jean L D. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models[J]. Geophysical Research Letters, 2005, 32(20). DOI: 10.1029/2005GL023851
doi: 10.1029/2005GL023851 |
[7] |
王晓青, 刘健, 王志远. 过去2000年中国区域温度模拟与重建的对比分析[J]. 地球科学进展, 2015, 30(12): 1318-1327. DOI: 10.11867/j.issn.1001-8166.2015.12.1318.
doi: 10.11867/j.issn.1001-8166.2015.12.1318 |
Wang X Q, Liu J, Wang Z Y. Comparison of simulated and reconstructed temperature in China during the past 2000 years[J]. Advances in Earth Science, 2015, 30(12): 1318-1327. DOI: 10.11867/j.issn.1001-8166.2015.12.1318 (in Chinese)
doi: 10.11867/j.issn.1001-8166.2015.12.1318 |
|
[8] |
Doi T, Vecchi G A, Rosati A J, et al. Biases in the Atlantic ITCZ in seasonal-interannual variations for a coarse- and a high-resolution coupled climate model[J]. Journal of Climate, 2013, 25(16): 5494-5511. DOI: 10.1175/JCLI-D-11-00360.1
doi: 10.1175/JCLI-D-11-00360.1 URL |
[9] |
Demory M E, Vidale P L, Roberts M J, et al. The role of horizontal resolution in simulating drivers of the global hydrological cycle[J]. Climate Dynamics, 2013, 42(7-8): 2201-2225. DOI: 10.1007/s00382-013-1924-4
doi: 10.1007/s00382-013-1924-4 URL |
[10] |
Murakami H, Vecchi G A, Underwood S, et al. Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model[J]. Journal of Climate, 2015, 28(23): 9058-9079. DOI: 10.1175/JCLI-D-15-0216.1
doi: 10.1175/JCLI-D-15-0216.1 URL |
[11] |
Mahajan S, Evans K J, Branstetter M, et al. Fidelity of precipitation extremes in high resolution global climate simulations[J]. Procedia Computer Science, 2015, 51: 2178-2187. DOI: 10.1016/j.procs.2015.05.492
doi: 10.1016/j.procs.2015.05.492 URL |
[12] |
Rajendran K, Kitoh A, Srinivasan J, et al. Monsoon circulation interaction with Western Ghats orography under changing climate[J]. Theoretical & Applied Climatology, 2012, 110(4): 555-571. DOI: 10.1007/s00704-012-0690-2
doi: 10.1007/s00704-012-0690-2 |
[13] |
高学杰, 石英, Giorgi F. 中国区域气候变化的一个高分辨率数值模拟[J]. 中国科学: 地球科学, 2010, 40(7): 911-922. DOI: 10.3724/SP.J.1011.2010.01081.
doi: 10.3724/SP.J.1011.2010.01081 |
Gao X J, Shi Y, Giorgi F. A high-resolution numerical model simulation of regional climate change in China[J]. Scientia Sinica: Terrae, 2010, 40(7): 911-922. DOI: 10.3724/SP.J.1011.2010.01081 (in Chinese)
doi: 10.3724/SP.J.1011.2010.01081 |
|
[14] |
高学杰, 石英, 张冬峰, 等. RegCM3对21世纪中国区域气候变化的高分辨率模拟[J]. 科学通报, 2012, 57(5): 374-381. DOI: 10.1360/csb2012-57-5-374.
doi: 10.1360/csb2012-57-5-374 |
Gao X J, Shi Y, Zhang D F, et al. RegCM3 high resolution simulation of China’s regional climate change in the 21st century[J]. Chinese Science Bulletin, 2012, 57(5): 374-381. DOI: 10.1360/csb2012-57-5-374 (in Chinese)
doi: 10.1360/csb2012-57-5-374 |
|
[15] |
赵宗慈, 罗勇, 黄建斌. 回顾IPCC 30年(1998—2018)[J]. 气候变化研究进展, 2018, 14(5): 540-546. DOI: 10.12006/j.issn.1673-1719. 2018.062.
doi: 10.12006/j.issn.1673-1719. 2018.062 |
Zhao Z C, Luo Y, Huang J B. Review IPCC 30 years (1998-2018)[J]. Climate Change Research, 2018, 14(5): 540-546. DOI: 10.12006/j.issn.1673-1719.2018.062 (in Chinese)
doi: 10.12006/j.issn.1673-1719.2018.062 |
|
[16] |
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456. DOI: 10.12006/j.issn.1673-1719.2019.193.
doi: 10.12006/j.issn.1673-1719.2019.193 |
Zhou T J, Zou L W, Chen X L. Commentary on the Coupled Model Intercomparison Project phase 6[J]. Climate Change Research, 2019, 15(5): 445-456. DOI: 10.12006/j.issn.1673-1719.2019.193 (in Chinese)
doi: 10.12006/j.issn.1673-1719.2019.193 |
|
[17] |
王磊, 包庆, 何编. CMIP6高分辨率模式比较计划(HighResMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 498-502. DOI: 10.12006/j.issn.1673-1719.2019.077.
doi: 10.12006/j.issn.1673-1719.2019.077 |
Wang L, Bao Q, He B. Short commentary on CMIP6 High Resolution Model Intercomparison Project (HighResMIP)[J]. Climate Change Research, 2019, 15(5): 498-502. DOI: 10.12006/j.issn.1673-1719.2019.077 (in Chinese)
doi: 10.12006/j.issn.1673-1719.2019.077 |
|
[18] |
吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1102-1111. DOI: CNKI:SUN:DQWX.0.2013-04-008.
doi: CNKI:SUN:DQWX.0.2013-04-008 |
Wu J, Gao X J. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1102-1111. DOI: CNKI:SUN:DQWX.0.2013-04-008 (in Chinese)
doi: CNKI:SUN:DQWX.0.2013-04-008 |
|
[19] |
Xu Y, Gao X, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Sciences, 2009, 26(4): 763-772. DOI: 10.1007/s00376-009-9029-z
doi: 10.1007/s00376-009-9029-z URL |
[20] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research Atmospheres, 2001, 106(D7): 7183-7192
doi: 10.1029/2000JD900719 URL |
[21] |
吴佳, 周波涛, 徐影. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估[J]. 地球物理学报, 2015 (9): 32-44. DOI: 10.1029/2000JD900719.
doi: 10.1029/2000JD900719 |
Wu J, Zhou B T, Xu Y. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection[J]. Chinese Journal of Geophysics, 2015 (9): 32-44. DOI: 10.1029/2000JD900719 (in Chinese)
doi: 10.1029/2000JD900719 |
|
[22] |
高学杰, 徐影, 赵宗慈, 等. 数值模式不同分辨率和地形对东亚降水模拟影响的试验[J]. 大气科学, 2006 (2): 185-192. DOI: CNKI:SUN:DQXK.0.2006-02-000.
doi: CNKI:SUN:DQXK.0.2006-02-000 |
Gao X J, Xu Y, Zhao Z C, et al. Impacts of horizontal resolution and topography on the numerical simulation of East Asian precipitation[J]. Chinese Journal of Atmospheric Science, 2006 (2): 185-192. DOI: CNKI:SUN:DQXK.0.2006-02-000 (in Chinese)
doi: CNKI:SUN:DQXK.0.2006-02-000 |
|
[23] |
Feng L, Zhou Y J, Wu B, et al. Projection of future precipitation change over China with a high-resolution global atmospheric model[J]. Advances in Atmospheric Sciences, 2011, 28(2). DOI: 10.1007/s00376-010-0016-1
doi: 10.1007/s00376-010-0016-1 |
[24] |
陈晓晨, 徐影, 许崇海, 等. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014, 10(3): 217-225. DOI: 10.3969/j.issn.1673-1719.2014.03.011.
doi: 10.3969/j.issn.1673-1719.2014.03.011 |
Chen X C, Xu Y, Xu C H, et al. Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Climate Change Research, 2014, 10(3): 217-225. DOI: 10.3969/j.issn.1673-1719.2014.03.011 (in Chinese)
doi: 10.3969/j.issn.1673-1719.2014.03.011 |
|
[25] |
黄荣辉, 陈际龙, 黄刚, 等. 中国东部夏季降水的准两年周期振荡及其成因[J]. 大气科学, 2006 (4): 545-560. DOI: 10.1016/S1001-8042(06)60011-0.
doi: 10.1016/S1001-8042(06)60011-0 |
Huang R H, Chen J L, Huang G, et al. The quasi-biennial oscillation of summer monsoon rainfall in China and its cause[J]. Atmospheric Sciences, 2006 (4): 545-560. DOI: 10.1016/S1001-8042(06)60011-0 (in Chinese)
doi: 10.1016/S1001-8042(06)60011-0 |
|
[26] |
黄荣辉, 陈际龙, 刘永. 我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系[J]. 大气科学, 2011, 35(4): 589-606. DOI: CNKI:SUN:DQXK.0.2011-04-001.
doi: CNKI:SUN:DQXK.0.2011-04-001 |
Huang R H, Chen J L, Liu Y. Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia[J]. Atmospheric Sciences, 2011, 35(4): 589-606. DOI: CNKI:SUN:DQXK.0.2011-04-001 (in Chinese)
doi: CNKI:SUN:DQXK.0.2011-04-001 |
[1] | 姜大膀, 王娜. IPCC AR6报告解读:水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699-704. |
[2] | 王文, 傅文睿. IPCC AR6的“产生影响的气候因子”评估框架[J]. 气候变化研究进展, 2021, 17(6): 719-725. |
[3] | 胡婷, 孙颖. IPCC AR6报告解读:人类活动对气候系统的影响[J]. 气候变化研究进展, 2021, 17(6): 644-651. |
[4] | 周天军, 陈梓明, 陈晓龙, 左萌, 江洁, 胡帅. IPCC AR6报告解读:未来的全球气候——基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6): 652-663. |
[5] | 陈燕, 惠品宏, 周学东, 杨杰. 气候变化对城市年径流总量控制率分区的影响[J]. 气候变化研究进展, 2021, 17(5): 525-536. |
[6] | 武占云. 将适应气候变化纳入国土空间规划:进展、困境与思路[J]. 气候变化研究进展, 2021, 17(5): 559-569. |
[7] | 于晓龙, 刘援. 应对气候变化南南合作物资赠送项目评估研究[J]. 气候变化研究进展, 2021, 17(5): 608-620. |
[8] | 高玉冰, 邢有凯, 何峰, 蒯鹏, 毛显强. 中国钢铁行业节能减排措施的协同控制效应评估研究[J]. 气候变化研究进展, 2021, 17(4): 388-399. |
[9] | 何峰, 刘峥延, 邢有凯, 高玉冰, 毛显强. 中国水泥行业节能减排措施的协同控制效应评估研究[J]. 气候变化研究进展, 2021, 17(4): 400-409. |
[10] | 蔡怡亨, 韩振宇, 周波涛. 对基于RegCM4降尺度的中国区域性暴雨事件模拟评估[J]. 气候变化研究进展, 2021, 17(4): 420-429. |
[11] | 毛显强, 曾桉, 邢有凯, 高玉冰, 何峰. 从理念到行动:温室气体与局地污染物减排的协同效益与协同控制研究综述[J]. 气候变化研究进展, 2021, 17(3): 255-267. |
[12] | 高庆先, 高文欧, 马占云, 唐甲洁, 付加锋, 李迎新, 任佳雪. 大气污染物与温室气体减排协同效应评估方法及应用[J]. 气候变化研究进展, 2021, 17(3): 268-278. |
[13] | 李媛媛, 王敏燕, 李丽平, 裘轶政, 吕举男, 田春秀, 姜欢欢. 无水印刷技术协同减排污染物与温室气体案例评估[J]. 气候变化研究进展, 2021, 17(3): 289-295. |
[14] | 高雅, 高超超. 三组火山强迫资料差异及其对模式模拟结果的影响[J]. 气候变化研究进展, 2021, 17(3): 305-316. |
[15] | 方佳毅, 殷杰, 石先武, 方建, 杜士强, 刘敏. 沿海地区复合洪水危险性研究进展[J]. 气候变化研究进展, 2021, 17(3): 317-328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|