气候变化研究进展 ›› 2024, Vol. 20 ›› Issue (4): 403-415.doi: 10.12006/j.issn.1673-1719.2024.021
收稿日期:
2024-01-29
修回日期:
2024-04-16
出版日期:
2024-07-30
发布日期:
2024-07-19
通讯作者:
江志红
作者简介:
周天仪,男,硕士研究生,基金资助:
ZHOU Tian-Yi(), JIANG Zhi-Hong(
), LI Wei, SUN Cen-Xiao
Received:
2024-01-29
Revised:
2024-04-16
Online:
2024-07-30
Published:
2024-07-19
Contact:
JIANG Zhi-Hong
摘要:
近年来,各种证据表明我国西北地区降水呈现增加的趋势,在未来变暖背景下,西北地区降水如何变化,成为我国学术界和社会广泛关注的问题。文中采用了两种基于物理关系的约束(优选)方法,即涌现约束和帕累托最优集合方案,选择了显著影响夏季西北地区降水的物理因子热带印度洋海温和东亚副热带200 hPa纬向风,对25个CMIP6模式给出的SSP585情景下21世纪末期夏季西北地区降水进行了不同约束方案的预估及对比。结果表明:相对于1995—2014年,基于CMIP6模式集合平均得到的21世纪末期夏季西北地区平均降水增加23%,未经约束的不确定性范围为-8.4%~61.7%。通过热带印度洋海温(东亚副热带200 hPa纬向风)涌现约束后,21世纪末期夏季西北地区降水增加24%(19%),不确定性范围减小为-8.4%~52%(-9%~45%),不确定性分别降低了15%(21%)。进一步利用三变量(中国西北夏季历史降水、热带印度洋海温、东亚副热带200 hPa纬向风)的帕累托最优集合方案得到21世纪末期夏季西北地区平均降水变化增加28%,范围为8%~44%,降低了近39%的不确定性范围。同时帕累托最优集合表明降水增多的区域主要集中在西北地区中部与西部,最大降水增幅达到60%以上。
周天仪, 江志红, 李伟, 孙岑霄. 不同物理约束方案下西北地区夏季降水的未来预估对比[J]. 气候变化研究进展, 2024, 20(4): 403-415.
ZHOU Tian-Yi, JIANG Zhi-Hong, LI Wei, SUN Cen-Xiao. A comparative study of future summer precipitation projections in Northwest China under different physical constraint schemes[J]. Climate Change Research, 2024, 20(4): 403-415.
图1 CMIP6模式预估的中国西北地区夏季降水量21世纪末期(2081—2100年)相比于历史时期(1995—2014年)相对变化的空间分布 注:图右上角数据表示区域平均的变化,图中加粗黑色实线为降水相对变化的零线。
Fig. 1 Spatial distribution of the relative change in summer precipitation over the Northwestern China predicted by CMIP6 models for the end of 21st century (2081-2100) compared to the historical period (1995-2014). (The data on the map represent the regional average changes, the bold black solid line in the figure represents the zero line of relative change in precipitation)
图2 中国西北地区夏季降水相对变化的模式间EOF分解(a)第一主模态,(b)第一主模态对应的各模式贡献序列与各模式的区域平均序列
Fig. 2 The first empirical orthogonal function (EOF) of the inter-model decomposition of relative changes in summer precipitation over Northwestern China. (a) The first mode, (b) the corresponding contribution sequences of each model and the regional average sequences of each model
图3 夏季西北地区区域平均降水分别与同期热带印度洋海温(a)以及700 hPa风场(b)的回归分布 注:(a)图中填色区域通过95%信度检验,框中区域为关键因子区域;(b)图中黑色加粗表示通过95%信度检验,框中区域为西北地区。
Fig. 3 Regression distribution of summer average precipitation over Northwestern China with contemporaneous sea surface temperatures in the tropical Indian Ocean (a) and the 700 hPa wind field (b), respectively. (The coloring area represent the 95% confidence level, the boxed area in (a) indicates the key factor region. The bold black lines represent areas passing the 95% confidence test, the boxed area in (b) indicates Northwestern China)
图4 夏季西北地区区域平均降水分别与东亚副热带200 hPa纬向风(a),以及沿西北地区(74°~105°E)平均经向环流和纬向风(b)的回归 注:加点表示通过95%信度检验,框中区域为关键因子区域;红色阴影为西风异常增强,蓝色阴影为东风异常增强。
Fig. 4 Regression of summer average precipitation over Northwestern China with the East Asian subtropical 200 hPa zonal wind (a), and the zonal wind and meridional circulation along the Northwestern China region (74°-105°E) (b), respectively. (The dots represent areas passing the 95% confidence test, the boxed area indicates the key factor region. The red shading indicates west wind anomalies, while the blue shading indicates east wind anomalies)
图5 25个CMIP6模式模拟的热带印度洋海温(a)及东亚副热带200 hPa纬向风(b)与预估的夏季西北地区区域平均降雨量变化的散点图 注:红线表示观测到热带印度洋区域平均海温。
Fig. 5 Scatter plot of the tropical Indian Ocean sea surface temperature (a) and the East Asian subtropical 200 hPa zonal wind (b) simulated by 25 CMIP6 models and the estimated changes in summer average precipitation over Northwestern China. (The red line represents the observed region mean sea surface temperature over the tropical Indian Ocean)
图6 基于热带印度洋海温(a)和东亚副热带200 hPa纬向风(b)对夏季西北地区区域平均降水变化进行预估约束前后的散点图
Fig. 6 Scatter plot of the summer average precipitation over Northwestern China, constrained by the tropical Indian Ocean sea surface temperature (a) and East Asian subtropical 200 hPa zonal wind (b), showing the estimates after constraints versus unconstrained estimates
图7 不同变量下帕累托最优集合方案及基于该变量优选所得模式 (a)西北地区夏季降水与热带印度洋海温的帕累托最优集合(组合1),(b)西北地区夏季降水与东亚副热带200 hPa纬向风的帕累托最优集合(组合2),(c)基于西北地区夏季降水与热带印度洋海温以及东亚副热带200 hPa纬向风3个变量的帕累托最优集合(组合3) 注:图中每一个点即为一个模式,其中实心点为优选模式。
Fig. 7 Optimal models obtained from the Pareto-optimal ensemble schemes. (a) The Pareto-optimal ensemble of summer precipitation in the Northwest region and tropical Indian Ocean sea surface temperature, (b) the Pareto-optimal ensemble of summer precipitation in the Northwest region and East Asian subtropical 200 hPa zonal wind, (c) the Pareto-optimal ensemble based on three variables, namely, summer precipitation in the Northwest region, tropical Indian Ocean sea surface temperature, and East Asian subtropical 200 hPa zonal wind. (Each point in the graph represents a model, with filled legends indicating the optimal models)
图8 基于不同方案的未来21世纪末期(2081—2100年)夏季西北地区区域平均降水变化预估结果的箱须图 注:箱体的上下边界分别表示预估结果的75%和25%分位数,实线的上下边界分别表示90%和10%分位数,箱体内黑线为中位数。
Fig. 8 Boxplots of future summer precipitation estimates for the Northwest region at the end of the 21st century based on different schemes. (The upper and lower boundaries of the box represent the 75th and 25th percentiles of the estimated results, while the upper and lower limits of the box represent the 90th and 10th percentiles, the black line inside the box represents the median)
图9 基于三变量帕累托最优集合方案的 21世纪末期(2081—2100年)西北地区夏季降水相比于历史时期(1995—2014年)的相对变化(a)及其与未经约束预估的差值(b)
Fig. 9 Relative change in summer precipitation in the Northwest region at the end of the 21st century (2081-2100) compared to the historical period (1995-2014) based on the three-variable Pareto optimal ensemble scheme (a), along with the difference from the unconstrained estimate (b)
[1] | 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24 (3): 219-226. |
Shi Y F, Shen Y P, Hu R J. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24 (3): 219-226 (in Chinese) | |
[2] | 李栋梁, 魏丽, 蔡英, 等. 中国西北现代气候变化事实与未来趋势展望[J]. 冰川冻土, 2003, 25 (2): 135-142. |
Li D L, Wei L, Cai Y, et al. The present facts and the future tendency of the climate change in Northwest China[J]. Journal of Glaciology and Geocryology, 2003, 25 (2): 135-142 (in Chinese) | |
[3] | 杨晓丹, 翟盘茂. 我国西北地区降水强度、频率和总量变化[J]. 科技导报, 2005, 23 (6): 24-26. |
Yang X D, Zhai P M. Changes in precipitation intensity, frequency and total in Northwest China[J]. Science &Technology Review, 2005, 23 (6): 24-26 (in Chinese) | |
[4] | 王鹏翔, 何金海, 郑有飞, 等. 近 44 年来我国西北地区干湿特征分析[J]. 应用气象学报, 2007, 18 (6): 769-775. |
Wang P X, He J H, Zheng Y F, et al. Aridity-wetness characteristics over Northwest China in recent 44 years[J]. Journal of Applied Meteorological Science, 2007, 18 (6): 769-775 (in Chinese) | |
[5] | Yang J, Zhang Q, Yue P, et al. Characteristics of warming and humidification in the Yellow River’s upper reaches and their impact on surface water resources[J]. International Journal of Climatology, 2023, 43 (16): 7667-7681 |
[6] | Zhang Q, Yang J H, Duan X Y, et al. The eastward expansion of the climate humidification trend in Northwest China since the start of this century and the synergistic influences on the circulation mechanism[J]. Climate Dynamics, 2022, 59: 2481-2497 |
[7] | 张强, 朱飙, 杨金虎, 等. 西北地区气候湿化趋势的新特征[J]. 科学通报, 2021, 66 (28-29): 3757-3771. |
Zhang Q, Zhu B, Yang J H, et al. New characteristics about the climate humidification trend in Northwest China[J]. Chinese Science Bulletin-Chinese, 2021, 66 (28-29): 3757-3771 (in Chinese) | |
[8] | Zhang Q, Yang J H, Wang W, et al. Climate warming and humidification in the arid regions of Northwest China: process, multi-scale characteristics and its effect on the ecological vegetation[J]. Journal of Meteorological Research, 2021, 35 (1): 113-127 |
[9] |
丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38 (6): 551-562.
doi: 10.11867/j.issn.1001-8166.2023.027 |
Ding Y H, Liu Y J, Xu Y, et al. Regional responses to global climate change: progress and prospects for trend, causes, and projection of climatic warming-wetting in Northwest China[J]. Advances in Earth Science, 2023, 38 (6): 551-562 (in Chinese)
doi: 10.11867/j.issn.1001-8166.2023.027 |
|
[10] | 张诗妍, 胡永云, 李智博. 我国西北降水变化趋势和预估[J]. 气候变化研究进展, 2022, 18 (6): 683-694. |
Zhang S Y, Hu Y Y, Li Z B. Recent changes and future projection of precipitation in Northwest China[J]. Climate Change Research, 2022, 18 (6): 683-694 (in Chinese) | |
[11] | Chen H P, Sun J Q. How the “best” models project the future precipitation change in China[J]. Advances in Atmospheric Sciences, 2009, 26 (4): 773-782 |
[12] | IPCC. Climate change 2014: synthesis report[M]. Cambridge: Cambridge University Press, 2014: 151 |
[13] | Wang Y J, Zhou B T, Qin D H, et al. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: observation and projection[J]. Advances in Atmospheric Sciences, 2017, 34 (3): 289-305 |
[14] | 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15 (5): 445-456. |
Zhou T J, Zou L W, Chen X L. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15 (5): 445-456 (in Chinese) | |
[15] | Wu T W, Lu Y X, Fang Y J, et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development, 2019, 12 (4): 1573-1600 |
[16] | Jiang J, Zhou T J, Chen X L, et al. Central Asian precipitation shaped by the tropical Pacific decadal variability and the Atlantic multidecadal variability[J]. Journal of Climate, 2021, 34 (18): 7541-7553 |
[17] | Zhu H, Jiang Z, Li J, et al. Does CMIP 6 inspire more confidence in simulating climate extremes over China?[J]. Advances in Atmospheric Sciences, 2020, 37: 1119-1132 |
[18] | 周天军, 陈梓明, 邹立维, 等. 中国地球气候系统模式的发展及其模拟和预估[J]. 气象学报, 2020, 78 (3): 332-350. |
Zhou T J, Chen Z M, Zou L W, et al. Development of climate and Earth system models in China: past achievements and new CMIP6 fesults[J]. Acta Meteorologica Sinica, 2020, 78 (3): 332-350 (in Chinese) | |
[19] | 王予, 李惠心, 王会军, 等. CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较[J]. 气象学报, 2021, 79 (3): 369-386. |
Wang Y, Li H X, Wang H J, et al. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5[J]. Acta Meteorologica Sinica, 2021, 79 (3): 369-386 (in Chinese) | |
[20] | 张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望[J]. 科学通报, 2023, 68: 1814-1828. |
Zhang Q, Yang J H, Wang P L, et al. Progress and prospect on climate warming and humidification in Northwest China[J]. Chinese Science Bulletin, 2023, 68: 1814-1828 (in Chinese) | |
[21] | Zhu H, Jiang Z, Li L, et al. Intercomparison of multi-model ensemble-processing strategies within a consistent framework for climate projection in China[J]. Science China: Earth Science, 2023, 66: 2125-2141 |
[22] | Boé J, Hall A, Qu X. September sea-ice cover in the Arctic Ocean projected to vanish by 2100[J]. Nature Geoscience, 2009, 2: 341-343 |
[23] | Lian X, Piao S, Huntingford C, et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations[J]. Nature Climate Change, 2018, 8: 640-646 |
[24] | Li G, Xie S P, He C, et al. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall[J]. Nature Climate Change, 2017 (7) : 708-712 |
[25] | Chen X, Zhou T, Wu P, et al. Emergent constraints on future projections of the western North Pacific Subtropical High[J]. Nature Communication, 2020, 11: 2802 |
[26] | Langenbunner B, Neelin J. Pareto-optimal estimates of California precipitation change[J]. Geophysical Research Letters, 2017, 44: 12436-12446 |
[27] | Brient F. Reducing uncertainties in climate projections with emergent constraints: concepts, examples and prospects[J]. Advances in Atmospheric Sciences, 2020, 37: 1-15 |
[28] | Langenbunner B, Neelin J. Multiobjective constraints for climate model parameter choices: Pragmatic Pareto fronts in CESM1[J]. Journal of Advances in Modeling Earth Systems, 2017, 9: 2008-2026 |
[29] | Herger N, Abramowtz G, Sherwood S, et al. Ensemble optimisation multiple constraints and overconfidence: a case study with future Australian precipitation change[J]. Nature, 2019, 53: 1581-1596 |
[30] | Sun C, Jiang Z, Tang Z, et al. Multi-objective ensemble-processing strategies to optimize the simulation of the western North Pacific Subtropical High in boreal summer[J]. Geophysical Research Letters, 2023, 50: e2023GL107040 |
[31] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56 (4): 1102-1111. |
Wu J, Gao X J. A gridded daily observation dataset over China region and comparison with the other datasets China[J]. Chinese Journal of Geophysics, 2013, 56 (4): 1102-1111 (in Chinese) | |
[32] | Chen Z, Zhou T, Chen X, et al. Observationally constrained projection of Afro-Asian monsoon precipitation[J]. Nature Communication, 2022, 13: 2552 |
[33] |
杨建玲, 郑广芬, 王素艳, 等. 印度洋海盆模影响西北东部降水的大气环流分析[J]. 高原气象, 2015, 34 (3): 700-705.
doi: 10.7522/j.issn.1000-0534.2014.00011 |
Yang J L, Zheng G F, Wang S Y, et al. Analyses of atmospheric circulation of tropical Indian Ocean basin mode influencing precipitation in East of Northwest China[J]. Plateau Meteorology, 2015, 34 (3): 700-705 (in Chinese)
doi: 10.7522/j.issn.1000-0534.2014.00011 |
|
[34] | Wu P, Liu Y, Ding Y, et al. Modulation of sea surface temperature over the North Atlantic and Indian-Pacific warm pool on interdecadal change of summer precipitation over Northwest China[J]. International Journal of Climatology, 2022, 42 (16): 8526-8538 |
[35] | Zhao Y, Wang M, Huang A, et al. Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang[J]. Theoretical and Applied Climatology, 2014, 116: 403-411 |
[36] | Peng D D, Zhou T J. Why was the arid and semiarid Northwest China getting wetter in the recent decades?[J]. Journal of Geophysical Research: Atmospheres, 2017, 122 (17): 9060-9075 |
[1] | 吴遥, 唐红玉, 魏麟骁, 何慧根. 华西地区秋季小时降水变化特征分析[J]. 气候变化研究进展, 2024, 20(5): 558-570. |
[2] | 王荣, 杜孝忠, 巢清尘, 赵珊珊, 叶殿秀, 李修仓, 李莹, 张梦然. 南水北调西线工程水源区和受水区降水变化及丰枯遭遇特征分析[J]. 气候变化研究进展, 2024, 20(5): 571-580. |
[3] | 吴燕汶, 晏红明, 史正涛, 舒康宁. 昆明强降水对城市化和热环境变化的响应研究[J]. 气候变化研究进展, 2023, 19(6): 723-737. |
[4] | 栾澜, 翟盘茂. 基于多源数据的青藏高原雨季降水特征变化分析[J]. 气候变化研究进展, 2023, 19(2): 173-190. |
[5] | 孙晓玲, 谢文欣, 周波涛. CMIP6模式对亚洲陆地生态系统的模拟评估与预估[J]. 气候变化研究进展, 2023, 19(1): 49-62. |
[6] | 战云健, 陈东辉, 廖捷, 鞠晓慧, 赵煜飞, 任国玉. 中国60城市站1901—2019年日降水数据集的构建[J]. 气候变化研究进展, 2022, 18(6): 670-682. |
[7] | 张诗妍, 胡永云, 李智博. 我国西北降水变化趋势和预估[J]. 气候变化研究进展, 2022, 18(6): 683-694. |
[8] | 缪文飞, 刘时银, 朱钰, 段仕美, 韩丰泽. 梅里雪山地区气温和降水的时空分异及海拔效应[J]. 气候变化研究进展, 2022, 18(3): 328-342. |
[9] | 王霞, 王瑛, 林齐根, 李宁, 张馨仁, 周笑影. 气候变化背景下中国滑坡灾害人口风险评估[J]. 气候变化研究进展, 2022, 18(2): 166-176. |
[10] | 张歆然, 陈昊明. CMIP6模式对青藏高原东坡暖季降水的模拟评估[J]. 气候变化研究进展, 2022, 18(2): 129-141. |
[11] | 李莹, 赵珊珊. 2001—2020年中国洪涝灾害损失与致灾危险性研究[J]. 气候变化研究进展, 2022, 18(2): 154-165. |
[12] | 孙晨, 汪方, 周月华, 李兰. CWRF模式对长江流域极端降水气候事件的模拟能力评估[J]. 气候变化研究进展, 2022, 18(1): 44-57. |
[13] | 王倩之, 刘凯, 汪明. NEX-GDDP降尺度数据对中国极端降水指数模拟能力的评估[J]. 气候变化研究进展, 2022, 18(1): 31-43. |
[14] | 周天军, 陈梓明, 陈晓龙, 左萌, 江洁, 胡帅. IPCC AR6报告解读:未来的全球气候——基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6): 652-663. |
[15] | 胡一阳, 徐影, 李金建, 韩振宇. CMIP6不同分辨率全球气候模式对中国降水模拟能力评估[J]. 气候变化研究进展, 2021, 17(6): 730-743. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|