气候变化研究进展 ›› 2025, Vol. 21 ›› Issue (2): 256-272.doi: 10.12006/j.issn.1673-1719.2024.132
收稿日期:2024-06-12
修回日期:2024-08-14
出版日期:2025-03-30
发布日期:2025-03-10
通讯作者:
张健,男,副教授,作者简介:袁家海,男,教授,基金资助:
YUAN Jia-Hai1,2(
), PENG Ke-Xin1, ZHANG Hao-Nan3, ZHANG Jian1(
)
Received:2024-06-12
Revised:2024-08-14
Online:2025-03-30
Published:2025-03-10
摘要:
气候加速变暖导致极端天气气候事件频发,带来高频次、大范围、强破坏的停电事故和缺电事件,给电力系统安全稳定运行敲响了警钟。随着温控负荷迅速增长和新能源并网规模不断攀升,电力系统气候敏感性持续增强。为确保电力系统安全稳定运行和促进电力低碳转型,提升电力系统气候适应性迫在眉睫。文中系统梳理了电力系统气候适应性研究进展,提出了一种电力系统气候适应性分析框架,分析了源、网、荷侧电力资源的气候适应性特点,讨论了电力系统运行和规划中气候适应性提升面临的挑战,展望了新型电力系统气候适应性提升路径。建议强化电力系统气候适应性的宏观政策引导,不断加强基础理论研究、创新关键技术、优化资源配置、完善管理机制,通过多元化方式提升新型电力系统气候适应性。
袁家海, 彭可欣, 张浩楠, 张健. 电力系统气候适应性的探索、挑战与展望[J]. 气候变化研究进展, 2025, 21(2): 256-272.
YUAN Jia-Hai, PENG Ke-Xin, ZHANG Hao-Nan, ZHANG Jian. Climate resilience of power systems: explorations, challenges and prospects[J]. Climate Change Research, 2025, 21(2): 256-272.
| [1] | 高红均, 郭明浩, 刘俊勇, 等. 从四川高温干旱限电事件看新型电力系统保供挑战与应对展望[J]. 中国电机工程学报, 2023, 43 (12): 4517-4538. |
| Gao H J, Guo M H, Liu J Y, et al. Power supply challenges and prospects in new power system from Sichuan electricity curtailment events caused by high-temperature drought weather[J]. Proceedings of the CSEE, 2023, 43 (12): 4517-4538 (in Chinese) | |
| [2] | 田书欣, 肖文渊, 符杨, 等. 极端高温灾害下电缆型配电网韧性提升策略研究[J/OL]. 中国电机工程学报, 2024 [2024-05-12]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240528.1647.011.html. |
| Tian S X, Xiao W Y, Fu Y, et al. Boosting resilience of cable distribution networks under extreme high-temperature disaster[J/OL]. Proceedings of the CSEE, 2024 [2024-05-12]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240528.1647.011.html (in Chinese) | |
| [3] | 陈愚. 我国用电增量区域分布的远期定性分析[J]. 中国电力企业管理, 2023 (25): 60-64. |
| Chen Y. Long-term qualitative analysis of regional distribution of electricity consumption growth in China[J]. China Power Enterprise Management, 2023 (25): 60-64 (in Chinese) | |
| [4] |
娄奇鹤, 李彦斌, 赵宇尘, 等. 适应极端事件的配电网弹性规划和投资策略研究综述[J]. 电力建设, 2024, 45 (5): 37-47.
doi: 10.12204/j.issn.1000-7229.2024.05.005 |
|
Lou Q H, Li Y B, Zhao Y C, et al. A review of research on resilience planning and investment strategies for distribution networks adapted to extreme events[J]. Electric Power Construction, 2024, 45 (5): 37-47 (in Chinese)
doi: 10.12204/j.issn.1000-7229.2024.05.005 |
|
| [5] | IPCC. Climate change 2007: impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2007 |
| [6] | IPCC. Climate change 2014: impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2014 |
| [7] | IPCC. Climate change 2022: impacts, adaptation and vulnerability[M]. Cambridge: Cambridge University Press, 2022 |
| [8] | Eakin H, Luers A L. Assessing the vulnerability of social-environmental systems[J]. Annual Review of Environment and Resources, 2006, 31: 365-394 |
| [9] | Yessoufou A N D, Kumar S, Houessionon P, et al. Vulnerability and resilience in the face of climate changes in Senegal’s drylands: measurement at the household level and determinant assessment[J]. Frontiers in Climate, 2024. DOI: 10.3389/fclim.2024.1330025 |
| [10] | Béné C, Wood R G, Newsham A, et al. Resilience: new utopia or new tyranny? Reflection about the potentials and limits of the concept of resilience in relation to vulnerability reduction programmes[J]. IDS Working Papers, 2012, 405: 1-61 |
| [11] | Thompson I, Mackey B, McNulty S, et al. Forest resilience, biodiversity, and climate change[J]. Secretariat of the Convention on Biological Diversity, 2009, 43: 1-67 |
| [12] | Linkov I, Bridges T, Creutzig F, et al. Changing the resilience paradigm[J]. Nature Climate Change, 2014, 4 (6): 407-409 |
| [13] | 陈德亮, 秦大河, 效存德, 等. 气候恢复力及其在极端天气气候灾害管理中的应用[J]. 气候变化研究进展, 2019, 15 (2): 167-177. |
| Chen D L, Qin D H, Xiao C D, et al. Climate resilience and its implications for China[J]. Climate Change Research, 2019, 15 (2): 167-177 (in Chinese) | |
| [14] | Pflanz M. On the resilience of command and control architectures[D]. Fairfax: George Mason University, 2011 |
| [15] | Suri N, Cabri G. Adaptive, dynamic, and resilient systems[M]. New York: Auerbach Publications, 2014 |
| [16] | 荣俊杰, 周明, 元博, 等. 台风天气考虑故障演化的电力系统韧性评估方法[J]. 电网技术, 2024, 48 (3): 1114-1131. |
| Rong J J, Zhou M, Yuan B, et al. Resilience assessment method on power systems under typhoon disaster considering failure evolution process[J]. Power System Technology, 2024, 48 (3): 1114-1131 (in Chinese) | |
| [17] |
卢赓, 邓婧, 王渝红, 等. 电力系统受极端天气的影响分析及其适应策略[J]. 发电技术, 2021, 42 (6): 751-764.
doi: 10.12096/j.2096-4528.pgt.21059 |
|
Lu G, Deng J, Wang Y H, et al. Analysis of power system affected by extreme weather and its adaptive strategy[J]. Power Generation Technology, 2021, 42 (6): 751-764 (in Chinese)
doi: 10.12096/j.2096-4528.pgt.21059 |
|
| [18] | 张文华, 闫庆友, 何钢, 等. 气候变化约束下中国电力系统低碳转型路径及策略[J]. 气候变化研究进展, 2021, 17 (1): 18-26. |
| Zhang W H, Yan Q Y, He G, et al. The pathway and strategy of China’s power system low-carbon transition under the constraints of climate change[J]. Climate Change Research, 2021, 17 (1): 18-26 (in Chinese) | |
| [19] | 张涛, 张宇轩, 刘加平. 东北传统民居碱土房建筑原型的气候适应性研究[J/OL]. 西安建筑科技大学学报(自然科学版), 2024 [2024-05-12]. http://kns.cnki.net/kcms/detail/61.1295.TU.20240531.1639.004.html. |
| Zhang T, Zhang Y X, Liu J P. Study on climate adaptability of the prototype of traditional alkaline Earth dwellings in Northeast China[J/OL]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2024 [2024-05-12]. http://kns.cnki.net/kcms/detail/61.1295.TU.20240531.1639.004.html (in Chinese) | |
| [20] | 陈钦萍, 刘振滨, 王波, 等. 气候变化适应性行为对茶农收入的影响: 基于福建312份农户调查数据[J]. 西南大学学报(自然科学版), 2024, 46 (8): 75-85. |
| Chen Q P, Liu Z B, Wang B, et al. Study on the impact of climate change adaptive behaviors on tea farmers’ income: based on survey of 312 rural households in Fujian province[J]. Journal of Southwest University (Natural Science Edition), 2024, 46 (8): 75-85 (in Chinese) | |
| [21] | 侯可雷. 气候适应性植物对提高城市生态韧性的影响[J]. 分子植物育种, 2024, 22 (13): 4460-4466. |
| Hou K L. The impact of climate adaptive plants on improving urban ecological resilience[J]. Molecular Plant Breeding, 2024, 22 (13): 4460-4466 (in Chinese) | |
| [22] | Watson J P, Guttromson R, Silva-Monroy C, et al. Conceptual framework for developing resilience metrics for the electricity, oil, and gas sectors in the United States: SAND-2014-18019[R]. Sandia National Lab (SNL-NM), Albuquerque, NM (United States), 2014 |
| [23] | Summers J K, Harwell L C, Buck K D, et al. Development of a Climate Resilience Screening Index (CRSI): an assessment of resilience to acute meteorological events and selected natural hazards[M]. Gulf Breeze: United States Environmental Protection Agency, 2017 |
| [24] | 辛保安, 李明节, 贺静波, 等. 新型电力系统安全防御体系探究[J]. 中国电机工程学报, 2023, 43 (15): 5723-5732. |
| Xin B A, Li M J, He J B, et al. Research on security defense system of new power system[J]. Proceedings of the CSEE, 2023, 43 (15): 5723-5732 (in Chinese) | |
| [25] | Dumas M, Kc B, Cunliff C I. Extreme weather and climate vulnerabilities of the electric grid: a summary of environmental sensitivity quantification methods: ORNL/TM-2019/1252[R]. Oak Ridge, TN (United States): Oak Ridge National Laboratory, 2019 |
| [26] | Bollinger L A, Dijkema G P J. Evaluating infrastructure resilience to extreme weather: the case of the Dutch electricity transmission network[J]. European Journal of Transport and Infrastructure Research, 2016, 16 (1). DOI: 10.18757/ejtir.2016.16.1.3122 |
| [27] | Pan S Y, Snyder S W, Packman A I, et al. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus[J]. Water-Energy Nexus, 2018, 1 (1): 26-41 |
| [28] | Qing S, Chen W, Hu Z, et al. Performance enhancement of a natural-gas-fired high-temperature thermoelectric generation system: design, experiment and modelling optimization[J]. Journal of Power Sources, 2021, 493: 229704 |
| [29] | Ibrahim S M A, Ibrahim M M A, Attia Sami I. The impact of climate changes on the thermal performance of a proposed pressurized water reactor: nuclear-power plant[J]. International Journal of Nuclear Energy, 2014, 1: 793908 |
| [30] | Zhang C, Zhong L, Wang J. Decoupling between water use and thermoelectric power generation growth in China[J]. Nature Energy, 2018, 3 (9): 792-799 |
| [31] | Liu J, Zhao D, Gerbens-Leenes P W, et al. China’s rising hydropower demand challenges water sector[J]. Scientific Reports, 2015, 5 (1): 11446 |
| [32] | Wang H, Ke S T, Wang T G, et al. Multi-stage typhoon-induced wind effects on offshore wind turbines using a data-driven wind speed field model[J]. Renewable Energy, 2022, 188: 765-777 |
| [33] | Zhang Y X, Wang G F. Assessment of the hazard of extreme low-temperature events over China in 2021[J]. Advances in Climate Change Research, 2022, 13 (6): 811-818 |
| [34] | Trakas D N, Hatziargyriou N D. Resilience constrained day-ahead unit commitment under extreme weather events[J]. IEEE Transactions on Power Systems, 2020, 35 (2): 1242-1253 |
| [35] | 刘鸿泉, 陈少林, 孙晓颖, 等. 基于神经网络的核电厂设备易损性分析[J]. 力学学报, 2022, 54 (7): 2059-2070. |
| Liu H Q, Chen S L, Sun X Y, et al. Vulnerability analysis of NPP equipment based on neural network[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (7): 2059-2070 (in Chinese) | |
| [36] | 长孙欣政, 董辰. 基于指数分布寿命试验区间估计的核电厂设备可靠性研究[J]. 核安全, 2023, 22 (5): 90-94. |
| Zhangsun X Z, Dong C. Research on equipment reliability of nuclear power plant by interval estimation of exponential distribution life test[J]. Nuclear Safety, 2023, 22 (5): 90-94 (in Chinese) | |
| [37] | Chen H, Liu S, Liu Q, et al. Estimating the impacts of climate change on electricity supply infrastructure: a case study of China[J]. Energy Policy, 2021, 150: 112119 |
| [38] | 李晶, 王素华. 计及气候条件含风力发电电力系统可靠性分析[J]. 电力系统及其自动化学报, 2012, 24 (5): 67-70. |
| Li J, Wang S H. Reliability of power system containing wind farms in consideration of climate conditions[J]. Proceedings of the CSU-EPSA, 2012, 24 (5): 67-70 (in Chinese) | |
| [39] | Jasiūnas J, Lund P D, Mikkola J. Energy system resilience: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111476 |
| [40] | Arghandeh R, von Meier A, Mehrmanesh L, et al. On the definition of cyber-physical resilience in power systems[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1060-1069 |
| [41] | Wang C, Ju P, Wu F, et al. A systematic review on power system resilience from the perspective of generation, network, and load[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112567 |
| [42] | 高海翔, 陈颖, 黄少伟, 等. 配电网韧性及其相关研究进展[J]. 电力系统自动化, 2015, 39 (23): 1-8. |
| Gao H X, Chen Y, Huang S W, et al. Distribution systems resilience: an overview of research progress[J]. Automation of Electric Power Systems, 2015, 39 (23): 1-8 (in Chinese) | |
| [43] | Zhou Z C, Wu Z, Jin T. Deep reinforcement learning framework for resilience enhancement of distribution systems under extreme weather events[J]. International Journal of Electrical Power & Energy Systems, 2021, 128: 106676 |
| [44] | Zhao N, Yu X, Hou K, et al. Full-time scale resilience enhancement framework for power transmission system under ice disasters[J]. International Journal of Electrical Power & Energy Systems, 2021, 126: 106609 |
| [45] | 唐文虎, 杨毅豪, 李雅晶, 等. 极端气象灾害下输电系统的弹性评估及其提升措施研究[J]. 中国电机工程学报, 2020, 40 (7): 2244-2254, 2403. |
| Tang W H, Yang Y H, Li Y J, et al. Investigation on resilience assessment and enhancement for power transmission systems under extreme meteorological disasters[J]. Proceedings of the CSEE, 2020, 40 (7): 2244-2254, 2403 (in Chinese) | |
| [46] | Najafi T A, Sepasian M S, Tourandaz K M. Resilience assessment and improvement of distribution networks against extreme weather events[J]. International Journal of Electrical Power & Energy Systems, 2021, 125: 106414 |
| [47] | 周晓敏, 葛少云, 李腾, 等. 极端天气条件下的配电网韧性分析方法及提升措施研究[J]. 中国电机工程学报, 2018, 38 (2): 505-513, 681. |
| Zhou X M, Ge S Y, Li T, et al. Investigation on resilience assessment and enhancement for power transmission systems under extreme meteorological disasters[J]. Proceedings of the CSEE, 2018, 38 (2): 505-513, 681 (in Chinese) | |
| [48] | 王炜歆, 王小君, 许寅, 等. 考虑输配协同的电网并行恢复分区及机组启动次序统一优化决策方法[J]. 中国电机工程学报, 2024, 44 (3): 859-872. |
| Wang W X, Wang X J, Xu Y, et al. A synthetic optimal decision-making method for parallel restoration sectionalizing and generator start-up sequence of power grids considering transmission and distribution system coordination[J]. Proceedings of the CSEE, 2024, 44 (3): 859-872 (in Chinese) | |
| [49] | 吉兴全, 张旋, 于一潇, 等. 考虑综合能源系统运行灵活性的输配协同优化调度[J]. 电力系统自动化, 2022, 46 (23): 29-40. |
| Ji X Q, Zhang X, Yu Y X, et al. Coordinated optimal dispatch of transmission and distribution power systems considering operation flexibility of integrated energy system[J]. Automation of Electric Power Systems, 2022, 46 (23): 29-40 (in Chinese) | |
| [50] |
王志伟, 王伟, 李德鑫, 等. 冰灾天气下考虑输配协同的电-热联合系统韧性提升策略[J]. 电力建设, 2024, 45 (5): 9-18.
doi: 10.12204/j.issn.1000-7229.2024.05.002 |
|
Wang Z W, Wang W, Li D X, et al. Enhancing resilience in electric-heat combined system: coordinated approach for transmission and distribution network during ice disasters[J]. Electric Power Construction, 2024, 45 (5): 9-18 (in Chinese)
doi: 10.12204/j.issn.1000-7229.2024.05.002 |
|
| [51] | Bagheri A, Zhao C, Qiu F, et al. Resilient transmission hardening planning in a high renewable penetration era[J]. IEEE Transactions on Power Systems, 2019, 34 (2): 873-882 |
| [52] | Hughes W, Zhang W, Bagtzoglou A C, et al. Damage modeling framework for resilience hardening strategy for overhead power distribution systems[J]. Reliability Engineering & System Safety, 2021, 207: 107367 |
| [53] | Ding T, Lin Y, Bie Z, et al. A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration[J]. Applied Energy, 2017, 199: 205-216 |
| [54] | Huang G, Wang J, Chen C, et al. Integration of preventive and emergency responses for power grid resilience enhancement[J]. IEEE Transactions on Power Systems, 2017, 32 (6): 4451-4463 |
| [55] | Yan M, Ai X, Shahidehpour M, et al. Enhancing the transmission grid resilience in ice storms by optimal coordination of power system schedule with pre-positioning and routing of mobile DC de-icing devices[J]. IEEE Transactions on Power Systems, 2019, 34 (4): 2663-2674 |
| [56] | 蔡田田, 姚浩, 杨英杰, 等. 基于云-边协同的配电网快速供电恢复智能决策方法[J]. 电力系统保护与控制, 2023, 51 (19): 94-103. |
| Cai T T, Yao H, Yang Y J, et al. Cloud-edge collaboration-based supply restoration intelligent decision-making method[J]. Power System Protection and Control, 2023, 51 (19): 94-103 (in Chinese) | |
| [57] | Metwaly M K, Teh J. Fuzzy dynamic thermal rating system-based sips for enhancing transmission line security[J]. IEEE Access, 2021, 9: 83628-83641 |
| [58] | Yao S, Wang P, Liu X, et al. Rolling optimization of mobile energy storage fleets for resilient service restoration[J]. IEEE Transactions on Smart Grid, 2020, 11 (2): 1030-1043 |
| [59] | Sedzro K S A, Shi X, Lamadrid A J, et al. A heuristic approach to the post-disturbance and stochastic pre-disturbance microgrid formation problem[J]. IEEE Transactions on Smart Grid, 2019, 10 (5): 5574-5586 |
| [60] | Panteli M, Trakas D N, Mancarella P, et al. Boosting the power grid resilience to extreme weather events using defensive islanding[J]. IEEE Transactions on Smart Grid, 2016, 7 (6): 2913-2922 |
| [61] | 杨志明, 李婉睿, 鄢哲明. 温度变化与电力需求的关系: 基于2000—2014年中国城市面板数据的经验证据[J]. 北京理工大学学报(社会科学版), 2019, 21 (5): 44-55. |
| Yang Z M, Li W R, Yan Z M. The relationship between temperature change and electric power demand-evidence from China’s urban panel data from 2000 to 2014[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2019, 21 (5): 44-55 (in Chinese) | |
| [62] | Fortes P, Simoes S G, Amorim F, et al. How sensitive is a carbon-neutral power sector to climate change? The interplay between hydro, solar and wind for Portugal[J]. Energy, 2022, 239: 122106 |
| [63] | Pezalla S, Obringer R. Evaluating the household-level climate-electricity nexus across three cities through statistical learning techniques[J]. Socio-Economic Planning Sciences, 2023, 89: 101664 |
| [64] | Li Y, Pizer W A, Wu L. Climate change and residential electricity consumption in the Yangtze River Delta, China[J]. Proceedings of the National Academy of Sciences, 2019, 116 (2): 472-477 |
| [65] | 杨佳泽, 王灿, 王增平. 新型电力系统背景下的智能负荷预测算法研究综述[J/OL]. 华北电力大学学报(自然科学版), 2023 [2024-05-12]. http://kns.cnki.net/kcms/detail/13.1212.TM.20230922.1429.002.html. |
| Yang J Z, Wang C, Wang Z P. Review on intelligent load forecasting algorithms for the new-type power system[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 2023 [2024-05-12]. http://kns.cnki.net/kcms/detail/13.1212.TM.20230922.1429.002.html (in Chinese) | |
| [66] | Kabir Md A, Chowdhury A H, Masood N A. A dynamic-adaptive load shedding methodology to improve frequency resilience of power systems[J]. International Journal of Electrical Power & Energy Systems, 2020, 122: 106169 |
| [67] | Ashrafi R, Amirahmadi M, Tolou-Askari M, et al. Multi-objective resilience enhancement program in smart grids during extreme weather conditions[J]. International Journal of Electrical Power & Energy Systems, 2021, 129: 106824 |
| [68] | Nourollahi R, Salyani P, Zare K, et al. Resiliency-oriented optimal scheduling of microgrids in the presence of demand response programs using a hybrid stochastic-robust optimization approach[J]. International Journal of Electrical Power & Energy Systems, 2021, 128: 106723 |
| [69] | Yao F, Wang J, Wen F, et al. An integrated planning strategy for a power network and the charging infrastructure of electric vehicles for power system resilience enhancement[J]. Energies, 2019, 12 (20): 3918 |
| [70] |
Hussain A, Bui V H, Kim H M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience[J]. Applied Energy, 2019, 240: 56-72
doi: 10.1016/j.apenergy.2019.02.055 |
| [71] | Perera A T D, Javanroodi K, Nik V M. Climate resilient interconnected infrastructure: co-optimization of energy systems and urban morphology[J]. Applied Energy, 2021, 285: 116430 |
| [72] | Lin Y, Bie Z, Qiu A. A review of key strategies in realizing power system resilience[J]. Global Energy Interconnection, 2018, 1 (1): 70-78 |
| [73] | Panteli M, Mancarella P. Operational resilience assessment of power systems under extreme weather and loading conditions[C]. 2015 IEEE Power & Energy Society General Meeting, 2015: 1-5 |
| [74] | Ghiasi M, Dehghani M, Niknam T, et al. Resiliency/cost-based optimal design of distribution network to maintain power system stability against physical attacks: a practical study case[J]. IEEE Access, 2021, 9: 43862-43875 |
| [75] | Amirioun M H, Aminifar F, Lesani H. Resilience-oriented proactive management of microgrids against windstorms[J]. IEEE Transactions on Power Systems, 2018, 33 (4): 4275-4284 |
| [76] |
Sabouhi H, Doroudi A, Fotuhi-Firuzabad M, et al. Electrical power system resilience assessment: a comprehensive approach[J]. IEEE Systems Journal, 2020, 14 (2): 2643-2652
doi: 10.1109/JSYST.2019.2934421 |
| [77] | Sang Y, Xue J, Sahraei-Ardakani M, et al. An integrated preventive operation framework for power systems during hurricanes[J]. IEEE Systems Journal, 2020, 14 (3): 3245-3255 |
| [78] | Kianmehr E, Nikkhah S, Vahidinasab V, et al. A resilience-based architecture for joint distributed energy resources allocation and hourly network reconfiguration[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (10): 5444-5455 |
| [79] | Dui H, Wang X, Zhou H. Redundancy-based resilience optimization of multi-component systems[J]. Mathematics, 2023, 11 (14): 3151 |
| [80] | Lai C Y, Liu C W. A scheme to mitigate generation trip events by ancillary services considering minimal actions of UFLS[J]. IEEE Transactions on Power Systems, 2020, 35 (6): 4815-4823 |
| [81] | Bhusal N, Abdelmalak M, Kamruzzaman M, et al. Power system resilience: current practices, challenges, and future directions[J]. IEEE Access, 2020, 8: 18064-18086 |
| [82] | Lei S, Chen C, Li Y, et al. Resilient disaster recovery logistics of distribution systems: co-optimize service restoration with repair crew and mobile power source dispatch[J]. IEEE Transactions on Smart Grid, 2019, 10 (6): 6187-6202 |
| [83] | Lin Y, Bie Z. Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding[J]. Applied Energy, 2018, 210: 1266-1279 |
| [84] | Yao S, Wang P, Zhao T. Transportable energy storage for more resilient distribution systems with multiple microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10 (3): 3331-3341 |
| [85] | Panteli M, Mancarella P. Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events[J]. IEEE Systems Journal, 2017, 11 (3): 1733-1742 |
| [86] | 景祥, 秦文萍, 姚宏民, 等. 极端自然灾害下新型电力系统弹性提升措施研究及关键技术综述[J]. 太原理工大学学报, 2022, 53 (3): 432-442. |
| Jing X, Qin W P, Yao H M, et al. A review of research and key technologies on the resilience improvement measures of new power systems under extreme natural disasters[J]. Journal of Taiyuan University of Technology, 2022, 53 (3): 432-442 (in Chinese) | |
| [87] | Paul S, Poudyal A, Poudel S, et al. Resilience assessment and planning in power distribution systems: past and future considerations[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113991 |
| [88] | Homer J, Tang Y, Taft J, et al. Electric distribution system planning with DERs: high-level assessment of tools and methods[C]. IEEE Press, 2020 |
| [89] | Donadio L, Fang J, Porté-Agel F. Numerical weather prediction and artificial neural network coupling for wind energy forecast[J]. Energies, 2021, 14 (2): 338 |
| [90] | 尹昊冉, 崇振霄, 郝金慧, 等. 地震灾害下电-气综合能源系统的韧性评估[J]. 河北电力技术, 2022, 41 (3): 22-29. |
| Yin H R, Chong Z X, Hao J H, et al. Resilience evaluation of electricity gas integrated energy system considering earthquake disaster[J]. Hebei Electric Power, 2022, 41 (3): 22-29 (in Chinese) | |
| [91] | Hu H, Ayyub B M. Machine learning for projecting extreme precipitation intensity for short durations in a changing climate[J]. Geosciences, 2019, 9 (5): 209 |
| [92] | O'Neill B C, Kriegler E, Riahi K, et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways[J]. Climatic Change, 2014, 122 (3): 387-400 |
| [93] | Hanna R, Gross R. How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners[J]. Energy Policy, 2021, 149: 111984 |
| [94] | Ouyang M, Dueñas-Osorio L. Multi-dimensional hurricane resilience assessment of electric power systems[J]. Structural Safety, 2014, 48: 15-24 |
| [95] | Ji L, Zhang B, Huang G, et al. Robust regional low-carbon electricity system planning with energy-water nexus under uncertainties and complex policy guidelines[J]. Journal of Cleaner Production, 2020, 252: 119800 |
| [96] | Ji L, Huang G H, Niu D X, et al. A stochastic optimization model for carbon-emission reduction investment and sustainable energy planning under cost-risk control[J]. Journal of Environmental Informatics, 2020. DOI: 10.3808/jei.202000428 |
| [97] | Peter J. How does climate change affect electricity system planning and optimal allocation of variable renewable energy?[J]. Applied Energy, 2019, 252: 113397 |
| [98] | Voisin N, Dyreson A, Fu T, et al. Impact of climate change on water availability and its propagation through the western U.S. power grid[J]. Applied Energy, 2020, 276: 115467 |
| [99] | Ralston F F, Craig M, Jaramillo P, et al. Effects of climate change on capacity expansion decisions of an electricity generation fleet in the southeast U.S.[J]. Environmental Science & Technology, 2021, 55, 4: 2522-2531 |
| [100] | Ma S, Chen B, Wang Z. Resilience enhancement strategy for distribution systems under extreme weather events[J]. IEEE Transactions on Smart Grid, 2018, 9 (2): 1442-1451 |
| [101] | Ma S, Li S, Wang Z, et al. Resilience-oriented design of distribution systems[J]. IEEE Transactions on Power Systems, 2019, 34 (4): 2880-2891 |
| [102] | Electric Power Research Institute (EPRI). Distribution grid resiliency: vegetation management[R]. Electric Power Research Institute (EPRI), 2015 |
| [103] | Zhang B, Dehghanian P, Kezunovic M. Optimal allocation of PV generation and battery storage for enhanced resilience[J]. IEEE Transactions on Smart Grid, 2019, 10 (1): 535-545 |
| [104] | Kim J, Dvorkin Y. Enhancing distribution system resilience with mobile energy storage and microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10 (5): 4996-5006 |
| [105] | Yan M, He Y, Shahidehpour M, et al. Coordinated regional-district operation of integrated energy systems for resilience enhancement in natural disasters[J]. IEEE Transactions on Smart Grid, 2019, 10 (5): 4881-4892 |
| [106] | Haasnoot M, van Klooster S, van Alphen J. Designing a monitoring system to detect signals to adapt to uncertain climate change[J]. Global Environmental Change, 2018, 52: 273-285 |
| [107] | Fouquet R. Path dependence in energy systems and economic development[J]. Nature Energy, 2016, 1 (8): 1-5 |
| [108] | Jeuken A, Haasnoot M, Reeder T, et al. Lessons learnt from adaptation planning in four deltas and coastal cities[J]. Journal of Water and Climate Change, 2014. DOI:10.2166/wcc.2014.141 |
| [109] | Lin J H, Wu Y K. Review of power system resilience concept, assessment, and enhancement measures[J]. Applied Sciences, 2024, 14 (4): 1428 |
| [110] | Lockwood J W, Oppenheimer M, Lin N, et al. Correlation between sea-level rise and aspects of future tropical cyclone activity in CMIP6 models[J]. Earth’s Future, 2022, 10 (4): e2021EF002462 |
| [111] | Cheng Z, Duan J, Chow M Y. To centralize or to distribute: that is the question: a comparison of advanced microgrid management systems[J]. IEEE Industrial Electronics Magazine, 2018, 12 (1): 6-24 |
| [112] | 孙为民, 孙华东, 何剑, 等. 面向严重自然灾害的电力系统韧性评估技术综述[J]. 电网技术, 2024, 48 (1): 129-139. |
| Sun W M, Sun H D, He J, et al. Review of power system resilience assessment techniques for severe natural disasters[J]. Power System Technology, 2024, 48 (1): 129-139 (in Chinese) | |
| [113] | Abdubannaev J, Sun Y, Xin A, et al. Enhancing power system resilience: a review[C]. IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), 2019: 2350-2354 |
| [114] |
Braff W A, Mueller J M, Trancik J E. Value of storage technologies for wind and solar energy[J]. Nature Climate Change, 2016, 6 (10): 964-969
doi: 10.1038/NCLIMATE3045 |
| [115] | 孙永辉, 孟雲帆, 葛磊蛟, 等. 人工智能赋能微电网运行优化的应用及展望[J]. 高电压技术, 2023, 49 (6): 2239-2252. |
| Sun Y H, Meng Y F, Ge L J, et al. Application and prospect of microgrid operation optimization enabled by artificial intelligence[J]. High Voltage Engineering, 2023, 49 (6): 2239-2252 (in Chinese) | |
| [116] | Ghadi M J, Rajabi A, Ghavidel S, et al. From active distribution systems to decentralized microgrids: a review on regulations and planning approaches based on operational factors[J]. Applied Energy, 2019, 253: 113543 |
| [1] | 袁家海, 牟琪林, 张浩楠, 赵艺莹, 张健. 考虑气候风险耦合影响的中长期电力资源规划[J]. 气候变化研究进展, 2024, 20(5): 624-635. |
| [2] | 张凯, 袁家海, 丁保迪, 张健, 张浩楠. 新型电力系统灵活性资源提升效益评估[J]. 气候变化研究进展, 2024, 20(3): 316-326. |
| [3] | 李现康, 韩星星, 梁洪松. 气候适应性技术采纳对农户农业收入的影响[J]. 气候变化研究进展, 2024, 20(2): 193-204. |
| [4] | 王文, 傅文睿. IPCC AR6的“产生影响的气候因子”评估框架[J]. 气候变化研究进展, 2021, 17(6): 719-725. |
| [5] | 匡洋, 李浩, 夏军, 杨泽川. 气候变化对跨境水资源影响的适应性评估与管理框架[J]. 气候变化研究进展, 2018, 14(1): 67-76. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|