气候变化研究进展 ›› 2025, Vol. 21 ›› Issue (2): 273-287.doi: 10.12006/j.issn.1673-1719.2024.285
收稿日期:2024-11-06
修回日期:2024-12-16
出版日期:2025-03-30
发布日期:2025-03-06
通讯作者:
袁佳双,女,正高级工程师,作者简介:马丽娟,女,正高级工程师,基金资助:
MA Li-Juan(
), YUAN Jia-Shuang(
), XU Yuan
Received:2024-11-06
Revised:2024-12-16
Online:2025-03-30
Published:2025-03-06
摘要:
人类活动导致的气候变化已经发生在整个气候系统,且影响到全球每个区域。进入21世纪,全球平均温度连年创下新高,一些气候临界要素即将到达临界点,但我们对这些威胁何时到来、该如何应对尚未准备好。文中从临界点的基本概念开始,系统地总结了气候系统临界要素现状及其发展趋势,全面分析了亚马孙雨林、大西洋经向翻转流(AMOC)、格陵兰冰盖、南极冰盖4个具有全球影响的临界系统的临界点,及一旦引爆可能产生的级联影响,尤其是对我国气候安全的可能影响。分析指出,亚马孙雨林崩溃主要通过影响青藏高原气温和降水,进而对我国风、光资源,以及冰冻圈稳定性产生负面影响;AMOC的崩溃主要通过影响亚洲季风降雨型对粮食生产产生影响,并有可能通过抬升区域海平面、加剧陆地高温热浪和海岸带风暴潮,同时给粮食安全和能源安全带来不利影响;两极冰盖崩溃对我国的影响,更多地是通过促进全球海平面上升,给海洋和海岸带生态系统带来负面影响,同时也通过为大西洋、南大洋注入更多淡水,加剧AMOC和南极翻转流的减弱,进而影响气候异常、海平面高度和海洋生态系统的生产力,直接或间接地影响食物供给和多样性。研究进一步通过分析临界点早期预警信号,指出对临界点进行早期预警对保障我国气候安全的战略重要性,并结合目前对临界点的科学认知,提出青藏高原可作为我国实现气候安全早期预警的第一抓手;对于政策制定者来说,应对气候变化的关键不仅是减缓,而且越来越多的是如何提升适应能力,以应对临界点的可能影响。
马丽娟, 袁佳双, 徐源. 气候临界点与我国气候安全新挑战[J]. 气候变化研究进展, 2025, 21(2): 273-287.
MA Li-Juan, YUAN Jia-Shuang, XU Yuan. Climate tipping points and its potential challenges to climate security in China[J]. Climate Change Research, 2025, 21(2): 273-287.
图2 气候临界点可能被触发的全球变暖水平及临界系统间的级联关系(由文献[16]改绘)
Fig. 2 The level of global warming that tipping points may be triggered at and the cascading relationships among tipping elements of climate system (redrew based on [16])
图4 亚马孙雨林与青藏高原遥相关的传播途径[15] 注:大的红、蓝圆点分别代表传播开始和结束的位置,黑色箭头表示传播方向。
Fig. 4 The propagation pathway of the teleconnection between the Amazon Rainforest area and the Qinghai-Tibet Plateau[15]
图5 格陵兰冰盖、南极冰盖、AMOC和亚马孙雨林跨越临界点对我国的综合影响示意图 注:蓝色线代表使目标减弱或降低,红色线代表使目标增强或加剧;实线表示影响具有高信度,虚线表示影响具有中等信度;线的箭头指向影响的方向。
Fig. 5 Schematic diagram of the combined impacts of the climate tipping points: Greenland Ice Sheet, the Antarctic Ice Sheet, the AMOC and the Amazon Rainforest on China
| [1] | IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021 |
| [2] | Zhang W X, Clark R, Zhou T J, et al. 2023: weather and climate extremes hitting the globe with emerging features[J]. Advances in Atmospheric Sciences, 2024, 41: 1001-1016 |
| [3] | Yao H X, Zhao L, Shen X Y, et al. Relationship between summer compound hot and dry extremes in China and the snow cover pattern in the preceding winter[J]. Frontiers in Earth Science, 2022, 10, 834284. DOI: 10.3389/feart.2022.834284 |
| [4] |
任嘉欣, 王卫光, 魏佳, 等. 中国夏季复合干热事件的时空演变规律及其与气候模态的关系[J]. 中国农村水利水电, 2024 (9): 173-180.
doi: 10.12396/znsd.240118 |
| Ren J X, Wang W G, Wei J, et al. Spatial and temporal variation of summer compound dry-hot events in China and their relationship with climate modes[J]. China Rural Water and Hydropower, 2024 (9): 173-180 (in Chinese) | |
| [5] | Zeng J N, Li H X, Sun B, et al. Summertime compound heat wave and drought events in China: interregional and subseasonal characteristics, and the associated driving factors[J]. Environmental Research Letters, 2024, 19: 074046. DOI: 10.1088/1748-9326/ad5576 |
| [6] | Wang C, Li Z, Chen Y N et al. Drought-heatwave compound events are stronger in drylands[J]. Weather and Climate Extremes, 2023, 42, 100632. DOI: 10.1016/j.wace.2023.100632 |
| [7] | Yu R, Zhai P M. Changes in compound drought and hot extreme events in summer over populated eastern China[J]. Weather and Climate Extremes, 2020, 30. DOI: 10.1016/j.wace.2020.100295 |
| [8] | Fan X W, Zhang Y L, Shi K, et al. Surging compound drought-heatwaves underrated in global soils[J]. PNAS, 2024, 121 (42): e2410294121. DOI: 10.1073/pnas.2410294121 |
| [9] | WMO. State of the global climate 2023[R/OL]. 2024 [2024-11-01]. https://www.unesco.org/zh/articles/state-global-climate-2023?hub=66904 |
| [10] | 马丽娟, 袁佳双, 黄磊. 联合国全民早期预警目标下中国气候风险管理前景分析[J]. 气候变化研究进展, 2024, 20 (1): 48-61. |
| Ma L J, Yuan J S, Huang L. Prospect of climate risks management in China under the framework of UN Early Warning for All Initiative[J]. Climate Change Research, 2024, 20 (1): 48-61 (in Chinese) | |
| [11] | Lenton T M, Held H, Kriegler E, et al. Tipping elements in the Earth’s climate system[J]. PNAS, 2008, 105 (6): 1768-1793 |
| [12] | Otto M I, Donges F J, Cremades R, et al. Social tipping dynamics for stabilizing Earth’s climate by 2050[J]. Proceedings of the National Academy of Sciences, 2020, 117 (5): 2354-2365 |
| [13] | Lenton M T, Armstrong McKay D I, Loriani S, et al. The global tipping points report 2023[R]. UK: University of Exeter, 2023 |
| [14] | Xiao C D, Zhang T, Che T. Do abrupt cryosphere events in High Mountain Asia indicate earlier tipping point than expected?[J]. Advances in Climate Change Research, 2023, 14: 873-883 |
| [15] | Liu T, Chen D, Yang L, et al. Teleconnections among tipping elements in the Earth system[J]. Nature Climate Change, 2023, 13 (1): 67-74 |
| [16] | Armstrong McKay D I, Staal A, Abrames J F, et al. Exceeding 1.5℃ global warming could trigger multiple climate tipping points[J]. Science, 2022, 377, 1171: eabn7950 |
| [17] | Lovejoy T E, Nobre C. Amazon tipping point[J]. Science Advances, 2018, 45: eaat2340 |
| [18] | Lovejoy T E, Nobre C. Winds of will: tipping change in the Amazon[J]. Science Advances, 2019, 5: eaba2949 |
| [19] | DeConto R M, Pollard D, Alley B R. The Paris Climate Agreement and future sea-level rise from Antarctica[J]. Nature, 2021, 593: 83-89 |
| [20] | Garbe J, Albrecht T, Levermann A, et al. The hysteresis of the Antarctic ice sheet[J]. Nature, 2020, 585: 538-544 |
| [21] | Shepherd A, Ivins E, Rignot E, et al. Mass balance of the Antarctic ice sheet from 1992 to 2017[J]. Nature, 2018, 558: 219-222 |
| [22] | Park J H, Kim S J, Lim H G, et al. Phytoplankton responses to increasing Arctic river discharge under the present and future climate simulations[J]. Environmental Research Letters, 2023, 18 (6): 064037. DOI: 10.1088/1748-9326/acd568 |
| [23] | van Westen R M, Kliphuis M, Dijkstra H A. Physics-based early warning signal shows that AMOC is on tipping course[J]. Science Advances, 2024, 10: eadk1189 |
| [24] | Li Q, England M H, Hogg A M, et al. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater[J]. Nature, 2023, 615: 841-847 |
| [25] | Steffen W, Rockströma J, Richardsonc K, et al. Trajectories of the Earth system in the Anthropocene[J]. Proceedings of the National Academy of Sciences, 2018, 115 (33): 8252-8259 |
| [26] | UK Climate Change Committee. Independent assessment of UK climate risk[R]. UK: Advice to Government for the UK’s Third Climate Change Risk Assessment (CCRA3), 2021 |
| [27] | Lenton M T. Early warning of climate tipping points[J]. Nature Climate Change, 2011, 1: 201-209. DOI: 10.1038/NCLIMATE1143 |
| [28] | IPCC. Special report on the ocean and cryosphere in a changing climate[M]. Cambridge: Cambridge University Press, 2019: 755 |
| [29] |
Ditlevsen P, Ditlevsen S. Warning of a forthcoming collapse of the Atlantic meridional overturning circulation[J]. Nature Communications, 2023, 14: 4254
doi: 10.1038/s41467-023-39810-w pmid: 37491344 |
| [30] | Li Q Q, Bi M, Yang S, et al. Winter extreme precipitation over the Tibetan Plateau influenced by Arctic sea ice on interdecadal timescale[J]. Advances in Climate Change Research, 2024. DOI: 10.1016/j.accre.2024.01.006 |
| [31] | Luo B, Luo D, Dai A, et al. Rapid summer Russian Arctic sea-ice loss enhances the risk of recent eastern Siberian wildfires[J]. Nature Communication, 2024, 15: 5399 |
| [32] | Wunderling N, Winkelmann R, Rockström J, et al. Global warming overshoots increase risks of climate tipping cascades in a network model[J]. Nature Climate Change, 2023, 13: 75-82 |
| [33] | Marengo J A, Espinoza J C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts[J]. International Journal of Climatology, 2016, 36: 1033-1050. DOI: 10.1002/joc.4420 |
| [34] | Araujo R, Assunçãob J, Hirota M, et al. Estimating the spatial amplification of damage caused by degradation in the Amazon[J]. PNAS, 2023, 120 (46): e2312451120 |
| [35] | Hansen E J, Makiko S, Simons L, et al. Global warming in the pipeline[J]. Oxford Open Climate Change, 2023, 3 (1): kgad008 |
| [36] | Broecker W. Unpleasant surprises in the greenhouse?[J]. Nature, 1987, 328: 123-126 |
| [37] | Sandeep N, Swapna P, Krishnan R, et al. South Asian monsoon response to weakening of Atlantic meridional overturning circulation in a warming climate[J]. Climate Dynamics, 2020, 54: 3507-3524 |
| [38] | Wassenburg J A, Vonhof H B, Cheng H, et al. Penultimate deglaciation Asian monsoon response to North Atlantic circulation collapse[J]. Nature Geoscience, 2021, 14: 937-941 |
| [39] | Nian D, Bathiany S, Ben-Yami M, et al. A potential collapse of the Atlantic meridional overturning circulation may stabilise eastern Amazonian rainforests[J]. Communications Earth & Environment, 2023, 4: 470 |
| [40] | Höning D, Willeit M, Calov R, et al. Multistability and transient response of the Greenland ice sheet to anthropogenic CO2 emissions[J]. Geophysical Research Letters, 2023, 50 (6): e2022GL101827 |
| [41] | Sohail T. Committed future ice-shelf melt[J]. Nature Climate Change, 2023, 13: 1164-1165 |
| [42] | Kummu M, de Moel H, Salvucci G, et al. Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th-21st centuries[J]. Environmental Research Letters, 2016, 11 (3): 034010 |
| [43] | Hauer M E, Fussell E, Mueller V, et al. Sea-level rise and human migration[J]. Nature Reviews Earth & Environment, 2020, 1: 28-39 |
| [44] |
Defrance D, Ramstein G, Charbit S, et al. Consequences of rapid ice sheet melting on the Sahelian population vulnerability[J]. PNAS, 2017, 114 (25): 6533-6538
doi: 10.1073/pnas.1619358114 pmid: 28584113 |
| [45] | Basher R. Global early warning systems for natural hazards: systematic and people-centred[J]. The Philosophical Transactions of the Royal Society, 2006, 364: 2167-2182 |
| [46] | United Nations. United Nations global survey of early warning systems: an assessment of capacities, gaps and opportunities towards building a comprehensive global early warning system for all natural hazards[R/OL]. 2006 [2024-11-01]. https://www.unisdr.org/2006/ppew/info-resources/ewc3/Global-Survey-of-Early-Warning-Systems.pdf |
| [47] | Chen C C, McCarl B, Adams R. Economic implications of potential ENSO frequency and strength shifts[J]. Climatic Change, 2001, 49: 147-159 |
| [48] | Dakos V, Boulton C A, Buxton J E, et al. Tipping point detection and early warnings in climate, ecological, and human systems[J]. Earth System Dynamics, 2024, 15: 1117-1135. |
| [49] | Lenton T M, Livina V N, Dakos V, et al. Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness[J]. The Philosophical Transactions of the Royal Society, 2012, 370: 1185-1204 |
| [50] | Ben-Yami M, Morr A, Bathiany S, et al. Uncertainties too large to predict tipping times of major Earth system components from historical data[J]. Science Advances, 2024, 10 (31). DOI: 10.1126/sciadv.adl4841 |
| [51] |
Chen F H, Ding L, Piao Sh L, et al. The Tibetan Plateau as the engine for Asian environmental change: the Tibetan Plateau Earth system research into a new era[J]. Science Bulletin, 2021, 66: 1263-1266
doi: 10.1016/j.scib.2021.04.017 pmid: 36654145 |
| [52] | Fan J F, Meng J, Chen X S, Schellnhuber H J. Complexity science meets Earth system[J]. Science Bulletin, 2025, 70 (1): 19-24 |
| [53] |
Lenton M T, Abrams J F, Bartsch A, et al. Remotely sensing potential climate change tipping points across scales[J]. Nature Communications, 2024, 15: 343
doi: 10.1038/s41467-023-44609-w pmid: 38184618 |
| [1] | 孙颖, 王东阡, 张学斌. 中国气候变化检测归因研究进展[J]. 气候变化研究进展, 2025, 21(2): 153-168. |
| [2] | 袁宇锋, 廖圳, 周佰铨, 翟盘茂. 全球气候变暖加剧背景下中国高影响区域性极端事件及归因研究进展[J]. 气候变化研究进展, 2025, 21(1): 44-55. |
| [3] | 董李丽, 张焓, 李清泉, 汪方, 赵崇博, 谢冰. 不同分辨率CWRF模式对中国区域气温模拟的比较研究[J]. 气候变化研究进展, 2024, 20(2): 129-145. |
| [4] | 马丽娟, 袁佳双, 黄磊. 联合国全民早期预警目标下中国气候风险管理前景分析[J]. 气候变化研究进展, 2024, 20(1): 48-61. |
| [5] | 刘颖杰, 周馥荔, 曹之玉, 许小峰, 张文建. 联合国全民早期预警行动计划进展[J]. 气候变化研究进展, 2023, 19(4): 530-540. |
| [6] | 梅梅, 侯威, 周星妍. 新、旧气候态差异及对中国地区气候和极端事件评估业务的影响[J]. 气候变化研究进展, 2022, 18(6): 653-669. |
| [7] | 余荣,翟盘茂. 海洋和冰冻圈变化有关的极端事件、突变及其影响与风险[J]. 气候变化研究进展, 2020, 16(2): 194-202. |
| [8] | 黄萌田, 周佰铨, 翟盘茂. 极端天气气候事件变化对荒漠化、土地退化和粮食安全的影响[J]. 气候变化研究进展, 2020, 16(1): 17-27. |
| [9] | 马欣,王文涛,张雪艳,吴绍洪,刘燕华. 基于哥本哈根学派的中国气候安全化比较分析[J]. 气候变化研究进展, 2019, 15(6): 693-699. |
| [10] | 石英,韩振宇,徐影,周波涛,吴佳. 6.25 km高分辨率降尺度数据对雄安新区及整个京津冀地区未来极端气候事件的预估[J]. 气候变化研究进展, 2019, 15(2): 140-149. |
| [11] | 吴佳 高学杰 石英. 中国20年一遇气温和降水极值变化的高分辨率模拟[J]. 气候变化研究进展, 2012, 8(4): 243-249. |
| [12] | 尤莉 戴新刚 张宇. 1961—2008年内蒙古降水极端事件分析[J]. 气候变化研究进展, 2010, 6(06): 411-416. |
| [13] | 石英;高学杰;Fillipo Giorgi;宋瑞艳;吴佳;董文杰. 全球变暖背景下中国区域不同强度降水事件变化的高分辨率数值模拟[J]. 气候变化研究进展, 2010, 6(03): 164-169. |
| [14] | 杨红龙;许吟隆;张镭;潘婕;陶生才. SRES A2情景下中国区域21世纪末平均和极端气候变化的模拟[J]. 气候变化研究进展, 2010, 6(03): 157-163. |
| [15] | 徐雨晴 苗秋菊 沈永平. 2008年:气候持续变暖,极端事件频发[J]. 气候变化研究进展, 2009, 05(01): 56-60. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|