[1] | 叶笃正, 罗四维, 朱抱真 . 西藏高原及其附近的流场结构和对流层大气的热量平衡[J]. 气象学报, 1957 ( 2):108-121 | [2] | Duan A M, Wang M R, Xiao Z X . Uncertainties in quantitatively estimating the atmospheric heat source over the Tibetan Plateau[J]. Atmospheric and Oceanic Science Letters, 2014,7(1):28-33 | [3] | Wu G X, Liu Y M, Zhang Q , et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology, 2007,8(4):770-789 | [4] | Flohn H . Large-scale aspects of the “summer monsoon” in South and East Asia[J]. Journal of the Meteorological Society of Japan Ser II, 1957,35:180-186 | [5] | Yanai M, Li C, Song Z . Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. Journal of the Meteorological Society of Japan, 1992,70(1):319-351 | [6] | Wang M R, Zhou S W, Duan A M . Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: comparison of observations and reanalysis data[J]. Chinese Science Bulletin, 2012,57(5):548-557 | [7] | Cui Y F, Duan A M, Liu Y M , et al. Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA[J]. Climate Dynamics, 2015,45(5-6):1617-1634 | [8] | Yao S L, Luo J J, Huang G , et al. Distinct global warming rates tied to multiple ocean surface temperature changes[J]. Nature Climate Change, 2017,7(7):486 | [9] | Duan A M, Xiao Z . Does the climate warming hiatus exist over the Tibetan Plateau?[J]. Scientific Reports, 2015 ( 5):13711 | [10] | Roxy M K, Ritika K, Terray P , et al. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient[J]. Nature Communications, 2015 ( 6):7423 | [11] | Sooraj K P, Terray P, Mujumdar M . Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models[J]. Climate Dynamics, 2015,45(1-2):233-252 | [12] | Shi Q, Liang S . Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data[J]. Atmospheric Chemistry and Physics, 2014,14(11):5659-5677 | [13] | 李锐, 李文卓, 傅云飞 , 等. 青藏高原ERA40和NCEP大气非绝热加热的不确定性[J]. 科学通报, 2017,62(5):420-431 | [14] | 王美蓉, 周顺武, 段安民 . 近30年青藏高原中东部大气热源变化趋势: 观测与再分析资料对比[J]. 科学通报, 2012,57(2):178-188 | [15] | Yanai M . A detailed analysis of typhoon formation[J]. Journal of the Meteorological Society of Japan Ser II, 1961,39(4):187-214 | [16] | 陈隆勋, 龚知本, 温玉璞 , 等. 东亚地区的大气辐射能的收支(一): 地球和大气的太阳辐射能收支[J]. 气象学报, 1964,34(2):146-161 | [17] | Chen L, Reiter E R, Feng Z . The atmospheric heat source over the Tibetan Plateau: May-August 1979[J]. Monthly Weather Review, 1985,113(10):1771-1790 | [18] | 阳坤, 郭晓峰, 武炳义 . 青藏高原地表感热通量的近期变化趋势[J]. 中国科学, 2010,40(7):923-932 | [19] | Li G P, Duan T Y, Wan J , et al. Determination of the drag coefficient over the Tibetan Plateau[J]. Advances in Atmospheric Sciences, 1996,13(4):511-518 | [20] | Chan S C, Nigam S . Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: intercomparisons with TRMM[J]. Journal of Climate, 2009,22(2):414-428 | [21] | 段安民, 肖志祥, 吴国雄 . 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016,12(5):374-381 | [22] | Xu X, Zhao T, Lu C , et al. An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2014,14(20):11287-11295 | [23] | 吴胜刚, 刘屹岷, 邹晓蕾 , 等. WRF模式对青藏高原南坡夏季降水的模拟分析[J]. 气象学报, 2016,74(5):744-756 |
|