|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (1): 10-25.doi: 10.12006/j.issn.1673-1719.2023.033
• Changes in Climate System • Previous Articles Next Articles
HU Jia-Yi1,2(), ZHAO Lin1,3(
), WANG Chong1, HU Guo-Jie3, ZOU De-Fu3, XING Zan-Pin3,4, JIAO Meng-Di1, QIAO Yong-Ping3, LIU Guang-Yue3,4, Du Er-Ji3,4
Received:
2023-02-27
Revised:
2023-04-10
Online:
2024-01-30
Published:
2023-10-30
HU Jia-Yi, ZHAO Lin, WANG Chong, HU Guo-Jie, ZOU De-Fu, XING Zan-Pin, JIAO Meng-Di, QIAO Yong-Ping, LIU Guang-Yue, Du Er-Ji. Applicability evaluation and correction of CLDAS surface temperature products in permafrost region of Qinghai-Tibet Plateau[J]. Climate Change Research, 2024, 20(1): 10-25.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2023.033
Fig. 3 Measured land surface temperature for different vegetation cover types in 2008-2018. (a) All periods, (b) freezing period, (c) alternate period, (d) melting period
[1] | 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64 (27): 2783-2795. |
Cheng G D, Zhao L, Li R, et al. Characteristics, changes and impacts of permafrost in the Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64 (27): 2783-2795 (in Chinese) | |
[2] | 邹德富, 赵林, 吴通华, 等. MODIS地表温度产品在青藏高原连续多年冻土区的适用性分析[J]. 冰川冻土, 2015, 37 (2): 308-317. |
Zou D F, Zhao L, Wu T H, et al. Analysis of the applicability of MODIS surface temperature products in the continuous permafrost region of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37 (2): 308-317 (in Chinese) | |
[3] |
Luo D, Jin H, Marchenko S S, et al. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau[J]. Geoderma, 2018, 312: 74-85
doi: 10.1016/j.geoderma.2017.09.037 URL |
[4] | 孙雪卉. 基于MODIS数据的青藏高原地表冻融指数估算方法研究[D]. 南京: 南京师范大学, 2019. |
Sun X H. Estimation method of surface freeze-thaw index in Tibetan Plateau based on MODIS data[D]. Nanjing: Nanjing Normal University, 2019 (in Chinese) | |
[5] |
Weng Q H, Fu P, Gao F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[J]. Remote Sensing of Environment, 2014, 145: 55-67
doi: 10.1016/j.rse.2014.02.003 URL |
[6] | 孙帅, 师春香, 梁晓, 等. 不同陆面模式对我国地表温度模拟的适用性评估[J]. 应用气象学报, 2017, 28 (6): 737-749. |
Sun S, Shi C X, Liang X, et al. Evaluation of applicability of different land surface models for surface temperature simulation in China[J]. Journal of Applied Meteorology, 2017, 28 (6): 737-749 (in Chinese) | |
[7] |
Qin Z, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 22 (18): 3719-3746
doi: 10.1080/01431160010006971 URL |
[8] | 苌亚平, 张世强, 赵求东. 高寒山区地表温度反演算法对比: 以疏勒河上游流域为例[J]. 遥感信息, 2016, 31 (4): 122-128. |
Chang Y P, Zhang S Q, Zhao Q D. Comparison of surface temperature inversion algorithms in alpine mountainous area: a case study of Shule River basin[J]. Remote Sensing Information, 2016, 31 (4): 122-128 (in Chinese) | |
[9] |
Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature: current status and perspectives[J]. Remote Sensing of Environment, 2013, 131: 14-37
doi: 10.1016/j.rse.2012.12.008 URL |
[10] |
阳勇, 陈仁升, 宋耀选. 高寒山区地表温度测算方法研究综述[J]. 地球科学进展, 2014, 29 (12): 1383-1393.
doi: 10.11867/j.issn.1001-8166.2014.12.1383 |
Yang Y, Chen R S, Song Y X. A review of research on surface temperature measurement methods in alpine mountains[J]. Advance in Earth Science, 2014, 29 (12): 1383-1393 (in Chinese) | |
[11] | Zhang H, Zhang F, Zhang G, et al. Evaluation of cloud effects on air temperature estimation using MODIS LST based on ground measurements over the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2016, 16 (21): 13681-13696 |
[12] | 王冰. 基于 RS和 GIS的复杂地形区土壤温度模拟及时空演变分析[D]. 成都: 四川农业大学, 2017. |
Wang B. Simulation and spatiotemporal evolution of soil temperature in complex topographic region based on RS and GIS[D]. Chengdu: Sichuan Agricultural University, 2017 (in Chinese) | |
[13] |
Wang X, Pang G, Yang M, et al. Evaluation of cli mate on the Tibetan Plateau using ERA-Interim reanalysis and gridded observations during the period 1979-2012[J]. Quaternary International, 2017, 444: 76-86
doi: 10.1016/j.quaint.2016.12.041 URL |
[14] | 温馨. 青藏高原遥感地表温度的时间序列建模与分析[D]. 成都: 电子科技大学, 2020. |
Wen X. Time series modeling and analysis of remote sensing land surface temperature over the Tibetan Plateau[D]. Chengdu: University of Electronic Science and Technology, 2020 (in Chinese) | |
[15] |
秦艳慧, 吴通华, 李韧, 等. ERA-Interim 地表温度资料在青藏高原多年冻土区的适用性[J]. 高原气象, 2015, 34 (3) : 666-675.
doi: 10.7522/j.issn.1000-0534.2014.00151 |
Qin Y H, Wu T H, Li R, et al. The applicability of ERA-Interim surface temperature data in the permafrost region of the Tibetan Plateau[J]. Plateau Meteorology, 2015, 34 (3): 666-675 (in Chinese) | |
[16] |
Qin Y, Zhang P, Liu W, et al. The application of elevation corrected MERRA2 reanalysis ground surface temperature in a permafrost model on the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2020, 175: 103067
doi: 10.1016/j.coldregions.2020.103067 URL |
[17] |
Zou D, Zhao L, Wu T, et al. Modeling ground surface temperature by means of remote sensing data in high-altitude areas: test in the central Tibetan Plateau with application of moderate-resolution imaging spectroradiometer Terra/Aqua land surface temperature and ground-based infrared radiometer[J]. Journal of Applied Remote Sensing, 2014, 8 (1): 083516
doi: 10.1117/1.JRS.8.083516 URL |
[18] |
Long D, Yan L, Bai L, et al. Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach[J]. Remote Sensing of Environment, 2020, 246: 111863
doi: 10.1016/j.rse.2020.111863 URL |
[19] | 朱智, 师春香, 谷军霞, 等. 近 10 a 来青藏高原地表温度时空变化特征分析[J]. 科学技术与工程, 2020, 20 (10): 3828-3837. |
Zhu Z, Shi C X, Gu J X, et al. Spatial and temporal variation of surface temperature over the Tibetan Plateau during the last 10 years[J]. Science Technology and Engineering, 2020, 20 (10): 3828-3837 (in Chinese) | |
[20] | 黄春林, 李新. 陆面数据同化系统的研究综述[J]. 遥感技术与应用, 2004 (5): 424-430. |
Huang C L, Li X. A review of land surface data assimilation systems[J]. Remote Sensing Technology and Application, 2004 (5): 424-430 (in Chinese) | |
[21] |
崔园园, 敬文琪, 覃军. 基于TIPEX III资料对CLDAS-V2.0和GLDAS-NOAH陆面模式产品在青藏高原地区的适用性评估[J]. 高原气象, 2018, 37 (5): 1143-1160.
doi: 10.7522/j.issn.1000-0534.2018.00020 |
Cui Y Y, Jing W Q, Qin J. Evaluation of the applicability of CLDAS-V2.0 and GLDAS-NOAH land model products in Tibetan Plateau based on TIPEX III data[J]. Plateau Meteorology, 2018, 37 (5): 1143-1160 (in Chinese) | |
[22] |
Han S, Liu B, Shi C, et al. Evaluation of CLDAS and GLDAS datasets for near-surface air temperature over major land areas of China[J]. Sustainability, 2020, 12 (10): 4311
doi: 10.3390/su12104311 URL |
[23] |
Hu G, Zhao L, Li R, et al. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products[J]. Geoderma, 2019, 337: 893-905
doi: 10.1016/j.geoderma.2018.10.044 URL |
[24] | 杜娟, 文莉娟, 苏东生. 三套再分析资料在青藏高原湖泊模拟研究中的适用性分析[J]. 高原气象, 2019, 38 (1) : 101-113. DOI: 10.7522/j.issn.1000-0534.2018.00110. |
Du J, Wen L J, Su D S. Reliability of three reanalysis datasets in simulation of three alpine lakes on the Qinghai Tibetan Plateau[J]. Plateau Meteorology, 2019, 38 (1): 101-113 (in Chinese) | |
[25] |
崔园园, 张强, 覃军, 等. CLDAS 融合土壤湿度产品在东北地区的适用性评估及订正[J]. 中国农业气象, 2019, 40 (10): 660-668.
doi: 10.3969/j.issn.1000-6362.2019.10.006 |
Cui Y Y, Zhang Q, Qin J, et al. Evaluation and correction of the applicability of CLDAS fusion soil moisture products in Northeast China[J]. Chinese Journal of Agrometeorology, 2019, 40 (10): 660-668 (in Chinese) | |
[26] | Zhao L. A new map of permafrost distribution on the Tibetan Plateau (2017)[DB]. National Tibetan Plateau Data Center, 2019. DOI: 10.11888/Geocry.tpdc.270468 |
[27] |
Zou D F, Zhao L, Sheng Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2016, 11 (6): 2527-2542
doi: 10.5194/tc-11-2527-2017 URL |
[28] | 赵林, 盛煜. 青藏高原多年冻土及变化[M]. 北京: 科学出版社, 2019: 27-28. |
Zhao L, Sheng Y. Permafrost and its change on the Tibetan Plateau[M]. Beijing: Science Press, 2019: 27-28 (in Chinese) | |
[29] |
Zhao L, Zou D, Hu G, et al. A synthesis dataset of permafrost thermal state for the Qinghai-Xizang (Tibet) Plateau, China[J]. Earth System Science Data, 2021, 13: 4207-4218
doi: 10.5194/essd-13-4207-2021 URL |
[30] | 师春香, 潘旸, 谷军霞, 等. 多源气象数据融合格点实况产品研制进展[J]. 气象学报, 2019, 77 (4): 774-783. |
Shi C X, Pan Y, Gu J X, et al. Progress in the development of real products from multi-source meteorological data melting points[J]. Acta Meteorologica Sinica, 2019, 77 (4): 774-783 (in Chinese) | |
[31] |
Yan D, Ma N, Zhang Y. Development of a fine-resolution snow depth product based on the snow cover probability for the Tibetan Plateau: validation and spatial-temporal analyses[J]. Journal of Hydrology, 2022, 604: 127027
doi: 10.1016/j.jhydrol.2021.127027 URL |
[32] | Yan D J, Ma N, Zhang Y S. A daily, 0.05° snow depth dataset for Tibetan Plateau (2000-2018)[DB]. National Tibetan Plateau Data Center, 2021 |
[33] |
Liu F, Wu H Y, Zhao Y G, et al. Mapping high resolution national soil information grids of China[J]. Science Bulletin, 2022, 67 (3): 328-340. DOI: 10.1016/j.scib.2021.10.013
pmid: 36546081 |
[34] | 柳菲, 李平. 基于归一化植被指数反演地表比辐射率方法的对比研究[J]. 城市勘测, 2016 (2): 64-68, 73. |
Liu F, Li P. Comparative study on inversion of land surface specific emissivity based on normalized vegetation index[J]. Urban Survey, 2016 (2): 64-68, 73 (in Chinese) | |
[35] |
Valor E, Caselles V. Mapping land surface emissivity from NDVI: application to European, African, and South American areas[J]. Remote Sensing of Environment, 1996, 57 (3): 167-184
doi: 10.1016/0034-4257(96)00039-9 URL |
[36] | 刘光生. 长江源多年冻土区沼泽及高寒草甸水热过程及其对气候变化的响应[D]. 兰州: 兰州大学, 2009. |
Liu G S. Hydrothermal processes of marshes and alpine meadows in permafrost region of Yangtze River source and their responses to climate change[D]. Lanzhou: Lanzhou University, 2009 (in Chinese) | |
[37] | 刘广岳, 谢昌卫, 杨淑华. 青藏公路沿线多年冻土区活动层起始冻融时间的时空变化特征和影响因素[J]. 冰川冻土, 2018, 40 (6): 1067-1078. |
Liu G Y, Xie C W, Yang S H. Spatial and temporal variation of initial freeze-thaw time of active layer in permafrost region along Qinghai-Tibet highway[J]. Journal of Glaciology and Geocryology, 2018, 40 (6): 1067-1078 (in Chinese) | |
[38] | 金会军, 孙立平, 王绍令, 等. 青藏高原中、东部局地因素对地温的双重影响(I):植被和雪盖[J]. 冰川冻土, 2008 (4): 535-545. |
Jin H J, Sun L P, Wang S L, et al. Dual effects of local factors on ground temperature in central and eastern Tibetan Plateau (I): vegetation and snow cover[J]. Journal of Glaciology and Geocryology, 2008 (4): 535-545 (in Chinese) | |
[39] | 王绍令, 丁永建, 赵林, 等. 青藏高原局地因素对近地表层地温的影响[J]. 高原气象, 2002 (1): 85-89. |
Wang S L, Ding Y J, Zhao L, et al. Influence of local factors on near-surface surface temperature over the Tibetan Plateau[J]. Plateau Meteorology, 2002 (1): 85-89 (in Chinese) | |
[40] | 周婷, 张寅生, 高海峰, 等. 青藏高原高寒草地植被指数变化与地表温度的相互关系[J]. 冰川冻土, 2015, 37 (1): 58-69. |
Zhou T, Zhang Y S, Gao H F, et al. Relationship between vegetation index change and surface temperature in alpine grassland of Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37 (1): 58-69 (in Chinese) | |
[41] |
李斌, 王慧敏, 秦明周, 等. NDVI、NDMI与地表温度关系的对比研究[J]. 地理科学进展, 2017, 36 (5): 585-596.
doi: 10.18306/dlkxjz.2017.05.006 |
Li B, Wang H M, Qin M Z, et al. A comparative study on the relationship between NDVI, NDMI and land surface temperature[J]. Progress in Geography, 2017, 36 (5): 585-596 (in Chinese) | |
[42] |
Weng Q, Lu D, Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment, 2004, 89 (4): 467-483
doi: 10.1016/j.rse.2003.11.005 URL |
[43] | 张廷军, 钟歆玥. 欧亚大陆积雪分布及其类型划分[J]. 冰川冻土, 2014, 36 (3): 481-490. |
Zhang T J, Zhong X Y. Distribution and classification of snow cover in Eurasia[J]. Journal of Glaciology and Geocryology, 2014, 36 (3): 481-490 (in Chinese) | |
[44] | 秦艳慧, 吴通华, 李韧, 等. ERA-Interim地表温度数据集在青藏高原冻土分布制图应用的适用性评估[J]. 冰川冻土, 2015, 37 (6): 1534-1543. |
Qin Y H, Wu T H, Li R, et al. Evaluation of applicability of ERA-Interim surface temperature dataset for mapping frozen soil distribution on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37 (6): 1534-1543 (in Chinese) | |
[45] | 孙军杰, 于溪滨, 郭松林, 等. 不同积雪深度对地面温度的增温效应[J]. 中国农业气象, 1995 (6): 49. |
Sun J J, Yu X B, Guo S L, et al. Warming effect of different snow depth on surface temperature[J]. Chinese Journal of Agrometeorology, 1995 (6): 49 (in Chinese) | |
[46] | 罗瑶, 彭文甫, 董永波, 等. 基于地理探测器下的川西高原地表温度空间格局及影响因子分析: 以西昌市为例[J]. 干旱区地理, 2020, 43 (3): 738-749. |
Luo Y, Peng W F, Dong Y B, et al. Spatial pattern and influencing factors of land surface temperature in western Sichuan Plateau based on geodetectors: a case study of Xichang city[J]. Arid Land Geography, 2020, 43 (3): 738-749 (in Chinese) | |
[47] | 刘广岳, 赵林, 谢昌卫, 等. 青藏高原多年冻土区地温年变化深度的变化规律及影响因素[J]. 冰川冻土, 2016, 38 (5): 1189-1200. |
Liu G Y, Zhao L, Xie C W, et al. Variation rule and influencing factors of annual ground temperature variation depth in permafrost region of Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2016, 38 (5): 1189-1200 (in Chinese) | |
[48] |
Jiao M, Zhao L, Wang C, et al. Spatiotemporal variations of soil temperature at 10 and 50 cm depths in permafrost regions along the Qinghai-Tibet engineering corridor[J]. Remote Sensing, 2023, 15 (2): 455
doi: 10.3390/rs15020455 URL |
[49] |
谭晓晴, 罗斯琼, 舒乐乐, 等. 基于机器学习的土壤温度预估研究综述[J]. 高原气象, 2022, 41 (2): 268-281.
doi: 10.7522/j.issn.1000-0534.2022.00024 |
Tan X Q, Luo S Q, Shu L L, et al. A review of soil temperature estimation research based on machine learning[J]. Plateau Meteorology, 2022, 41 (2): 268-281 (in Chinese)
doi: 10.7522/j.issn.1000-0534.2022.00024 |
|
[50] | 赵鹏. ERA-Interim气温数据在祁连山的适用性分析与校正研究[D]. 福州: 福建师范大学, 2020. |
Zhao P. Applicability analysis and correction research of ERA-Interim air temperature data in the Qilian Mountains[D]. Fuzhou: Fujian Normal University, 2020 (in Chinese) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|