|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (2): 129-141.doi: 10.12006/j.issn.1673-1719.2021.059
• Changes in Climate System • Previous Articles Next Articles
ZHANG Xin-Ran(), CHEN Hao-Ming(
)
Received:
2021-04-07
Revised:
2021-09-28
Online:
2022-03-30
Published:
2022-02-11
Contact:
CHEN Hao-Ming
E-mail:zhangxinranrrr@163.com;chenhm@cma.gov.cn
ZHANG Xin-Ran, CHEN Hao-Ming. Assessment of warm season precipitation in the eastern slope of the Tibetan Plateau by CMIP6 models[J]. Climate Change Research, 2022, 18(2): 129-141.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2021.059
Fig. 1 Spatial distribution of precipitation. (The black contour is the 500 m terrain height line, the red box (101˚-106˚E, 29˚-34˚N) is the eastern slope of the Tibetan Plateau)
Fig. 3 Distribution of precipitation average between 29˚N and 31˚N. (The gray vertical dashed line is the location of the TRMM observation precipitation center)
Fig. 4 Taylor diagram of the spatial distribution of precipitation between each CMIP6 model and TRMM observation. (a) East Asian region (70˚-130˚E, 10˚-50˚N), (b) the region of eastern slope of the Tibetan Plateau (100˚-110˚E, 25˚-35˚N)
Fig. 5 Simulation of each CMIP6 model for different intensity precipitation in the eastern slope of the Tibetan plateau. (a) Occurrence as a percentage of total days, (b) annual precipitation
Fig. 8 Spatial distribution of the correlation coefficients between the precipitation series in the eastern slope of the Tibetan Plateau and other regional 500 hPa southerly wind series in the East Asia region. (The black dashed box is the center of positive correlation)
Fig. 9 Decade-by-decade evolution of precipitation (red line) in the eastern slope of the Tibetan Plateau and the south wind (black line) in the positive correlation center in Fig. 8. (The gray dotted line in the figure represents every ten days, for example, 5 in the figure refers to mid-May, the upper gray dotted line refers to early May, and the latter gray dotted line refers to late May)
[1] |
Dai A. Precipitation characteristics in eighteen coupled climate models[J]. Journal of Climate, 2006, 19(18):4605-4630
doi: 10.1175/JCLI3884.1 URL |
[2] |
Teixeira M, Satyamurty P. Dynamical and synoptic characteristics of heavy rainfall episodes in southern Brazil[J]. Monthly Weather Review, 2007, 135(2):598-617
doi: 10.1175/MWR3302.1 URL |
[3] |
Mehran A, Aghakouchak A, Phillips T J. Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119:1695-1707
doi: 10.1002/2013JD021152 URL |
[4] |
Alves L M, Marengo J. Assessment of regional seasonal predictability using the precis regional climate modeling system over South America[J]. Theoretical and Applied Climatology, 2010, 100(3):337-350
doi: 10.1007/s00704-009-0165-2 URL |
[5] | Gulizia C, Camilloni I. Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America[J]. International Journal of Climatology, 2015, 35(4):598-603 |
[6] | Zhou X J, Zhao P, Chen J M, et al. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J]. Science in China Series D Earth Sciences, 2009, 52(11):1679-1693 |
[7] |
Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2:663-667
doi: 10.1038/nclimate1580 URL |
[8] | 周天军, 吴波, 郭准, 等. 东亚夏季风变化机理的模拟和未来变化的预估: 成绩和问题, 机遇和挑战[J]. 大气科学, 2018, 42(4):902-934. |
Zhou T J, Wu B, Guo Z, et al. A review of East Asian summer monsoon simulation and projection: achievements and problems, opportunities and challenges[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4):902-934 (in Chinese) | |
[9] |
Yu R C, Li W, Zhang X H, et al. Climatic features related to Eastern China summer rainfalls in the NCAR CCM3[J]. Advances in Atmospheric Sciences, 2000, 17(4):503-518
doi: 10.1007/s00376-000-0014-9 URL |
[10] | 高学杰, 周广庆, 陈嘉滨. 使用气候海温的T63/NCC模式对北半球大气环流和中国气候的模拟[J]. 气候与环境研究, 2003, 8(3):339-347. |
Gao X J, Zhou G Q, Chen J B. Simulation of global circulation and climate in China by T63 model with mass conservation law[J]. Climatic and Environmental Research, 2003, 8(3):339-347 (in Chinese) | |
[11] |
Xu Y, Gao X J, Giorgi F. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections[J]. Climate Research, 2010, 41(1):61-81
doi: 10.3354/cr00835 URL |
[12] |
Xu Y, Xu C H. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J]. Atmospheric and Oceanic Science Letters, 2012, 5(6):489-494
doi: 10.1080/16742834.2012.11447041 URL |
[13] |
Su F, Duan X, Chen D, et al. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J]. Journal of Climate, 2013, 26(10):3187-3208
doi: 10.1175/JCLI-D-12-00321.1 URL |
[14] | Chen L, Frauenfeld O W. A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections[J]. Journal of Geophysical Research, 2014, 119(10):5767-5786 |
[15] | 胡岑, 姜大膀, 范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5):924-938. |
Hu Q, Jiang D B, Fan G Z. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5):924-938 (in Chinese) | |
[16] | 张武龙, 张井勇, 范广洲. CMIP5模式对我国西南地区干湿季降水的模拟和预估[J]. 大气科学, 2015, 39(3):559-570. |
Zhang W L, Zhang J Y, Fan G Z. Evaluation and projection of dry- and wet-season precipitation in southwestern China using CMIP5 models[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(3):559-570 (in Chinese) | |
[17] |
Jiang D B, Tian Z P, Lang X M. Reliability of climate models for China through the IPCC third to fifth assessment reports[J]. International Journal of Climatology, 2016, 36(3):1114-1133
doi: 10.1002/joc.4406 URL |
[18] |
Wang X J, Pang G J, Yang M X. Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J]. International Journal of Climatology, 2018, 38(3):1116-1131
doi: 10.1002/joc.2018.38.issue-3 URL |
[19] | 冯蕾, 周天军. 高分辨率MRI模式对青藏高原夏季降水及水汽输送通量的模拟[J]. 大气科学, 2015, 39(2):386-398. |
Feng L, Zhou T J. Simulation of summer precipitation and associated water vapor transport over the Tibetan Plateau by meteorological research institute model[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2):386-398 (in Chinese) | |
[20] |
Li J, Yu R C, Yuan W H, et al. Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(2):774-790
doi: 10.1002/2014MS000414 URL |
[21] |
Zhang Y, Chen H M. Comparing CAM5 and superparameterized CAM5 simulations of summer precipitation characteristics over continental East Asia: mean state, frequency-intensity relationship, diurnal cycle, and influencing factors[J]. Journal of Climate, 2016, 29(3):1067-1089
doi: 10.1175/JCLI-D-15-0342.1 URL |
[22] |
Yu R C, Li J, Zhang Y, et al. Improvement of rainfall simulation on the steep edge of the Tibetan Plateau by using a finite-difference transport scheme in CAM5[J]. Climate Dynamics, 2015, 45(9-10):2937-2948
doi: 10.1007/s00382-015-2515-3 URL |
[23] |
Ji Z, Kang S. Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios[J]. Journal of the Atmospheric Sciences, 2013, 70(4):1278-1290
doi: 10.1175/JAS-D-12-0155.1 URL |
[24] | Gao Y H, Xu J W, Chen D L. Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J]. Global Warming Focus, 2015, 28(7):2823-2841 |
[25] |
Fu Y H, Gao X J, Zhu Y M, et al. Climate change projection over the Tibetan Plateau based on a set of RCM simulations[J]. Advances in Climate Change Research, 2021, 12(3):313-321
doi: 10.1016/j.accre.2021.01.004 URL |
[26] |
Eyring V, Cox P M, Flato G M, et al. Taking climate model evaluation to the next level[J]. Nature Climate Change, 2019, 9(2):102-110
doi: 10.1038/s41558-018-0355-y URL |
[27] | 容新尧, 李建, 陈昊明, 等. CAMS-CSM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5):540-544. |
Rong X Y, Li J, Chen H M, et al. Introduction of CAMS-CSM model and its participation in CMIP6[J]. Climate Change Research, 2019, 15(5):540-544 (in Chinese) | |
[28] | 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5):445-456. |
Zhou T J, Zou L W, Chen X L. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5):445-456 (in Chinese) | |
[29] |
Jiang D B, Hu D, Tian Z P, et al. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon[J]. Advances in Atmospheric Sciences, 2020, 37(10):1102-1134
doi: 10.1007/s00376-020-2034-y URL |
[30] |
Yang X L, Zhou B T, Xu Y, et al. CMIP6 evaluation and projection of temperature and precipitation over China[J]. Advances in Atmospheric Sciences, 2021, 38(5):817-830
doi: 10.1007/s00376-021-0351-4 URL |
[31] |
Zhu Y Y, Yang S N. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5[J]. Advances in Climate Change Research, 2020, 11(3). DOI: 10.1016/j.accre.2020.08.001
doi: 10.1016/j.accre.2020.08.001 |
[32] |
Wu L, Zhai P. Validation of daily precipitation from two high-resolution satellite precipitation datasets over the Tibetan Plateau and the regions to its east[J]. Acta Meteorologica Sinica, 2012, 26(6):735-745
doi: 10.1007/s13351-012-0605-2 URL |
[33] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research, 2001, 106:7183-7192
doi: 10.1029/2000JD900719 URL |
[34] |
Lin X, Randall D A, Fowler L D. Diurnal variability of the hydrologic cycle and radiative fluxes: comparisons between observations and a GCM[J]. Journal of Climate, 2000, 13(23):4159-4179
doi: 10.1175/1520-0442(2000)013<4159:DVOTHC>2.0.CO;2 URL |
[35] | 祝从文, 刘伯奇, 左志燕, 等. 东亚夏季风次季节变化研究进展[J]. 应用气象学报, 2019, 30(4):401-415. |
Zhu C W, Liu B Q, Zuo Z Y, et al. Recent advances on sub-seasonal variability of East Asian summer monsoon[J]. Journal of Applied Meteorological Science, 2019, 30(4):401-415 (in Chinese) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|