|
Climate Change Research ›› 2021, Vol. 17 ›› Issue (4): 430-443.doi: 10.12006/j.issn.1673-1719.2020.114
• Changes in Climate System • Previous Articles Next Articles
Received:
2020-06-08
Revised:
2020-07-07
Online:
2021-07-30
Published:
2021-08-11
QI Li, YANG Rui-Ting. Variation of southerly wind on the southeast side of Tibetan Plateau under global warming: comparison among CMIP5 simulations[J]. Climate Change Research, 2021, 17(4): 430-443.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2020.114
Fig. 1 The probability of southerly wind in 850 hPa in 1980-2016 (The shade indicates the region whose probability greater than 0.9. Red rectangle shows the study region over 22.5°-30°N, 102.5°-107.5°E)
Fig. 2 Time-longtitude cross section of 850 hPa meridional wind (m/s) over 22.5˚-30˚N in 1980-2005 from reanalysis data and historical simulation of 13 CMIP5 models (The shade marks the southerly wind)
Fig. 3 Average meridional wind (black line) (thick line indicates the moving average of 5 pentad) over the study region in 1980-2005 from reanalysis data and historical simulation of 13 CMIP5 models
Fig. 4 Time series of global mean surface temperature (relative to 1986-2005) in (a) RCP 2.6, (b) RCP 4.5, (c) RCP 6.0 and (d) RCP 8.5 scenarios (Solid lines are the 9 years running average)
Fig. 5 Southerly wind anomaly (dashed lines) over the study region relative to 1985-2005 in RCP 2.6 (a), RCP 4.5 (b), RCP 6.0 (c) and RCP 8.5 (d) scenarios (Solid lines are the 9 years running average)
Fig. 6 The time-longtitude cross section of the future change of 850 hPa meridional wind over 22.5˚-30˚N relative to 1986-2005 when the global warming reaches 1.5℃, 2℃ and 3℃ in RCP2.6, RCP4.5, RCP6.0, and RCP8.5 in BCC-CSM1.1 simulation (The dots marks the region reaching 90% confidence level)
Fig. 8 Anomaly air temperature along 30˚N in autumn when global warming reaches 1.5℃ in RCP2.6, RCP4.5, RCP6.0 and RCP8.5 in BCC-CSM1.1 and MIROC5 simulation (The dots marks the region reaching 90% confidence level)
Fig. 9 The future change of autumn air temperature relative to 1986-2005 when the global warming reaches 1.5℃ in BCC-CSM1.1 and MIROC5 simulations (The dots mark the region reaching 90% confidence level)
Fig. 10 The time series of surface thermal contrast between the Tibetan Plateau and East Asian plain when the global warming reaches 1.5℃ (Gray shade marks the autumn season)
[1] | 祁莉, 何金海. 青藏高原东南侧南风的季节演变特征分析[J]. 高原气象, 2011, 30(5):1139-1147. DOI: 1000-0534(2011)05-1139-09. |
Qi L, He J H. Seasonal evolution features of the southerly wind on the southeast side of Tibetan Plateau[J]. Plateau Meteorology, 2011, 30(5):1139-1147. DOI: 1000-0534(2011)05-1139-09 (in Chinese) | |
[2] | 韦晋, 何金海, 苏志重, 等. 青藏高原东南侧南风演变特征及其与中国东部春季降水的关系分析[J]. 气象, 2013, 39(2):129-136. DOI: 10.7519/j.issn.1000-0526.2013.02.001. |
Wei J, He J H, Su Z Z, et al. Characteristics of south wind in east southern Tibetan Plateau and its relationship with eastern China spring rain[J]. Meteorological Monthly, 2013, 39(2):129-136. DOI: 10.7519/j.issn.1000-0526.2013.02.001 (in Chinese) | |
[3] |
Qi L, He J H, Zhang Z Q, et al. Seasonal cycle of the zonal land-sea thermal contrast and East Asian subtropical monsoon circulation[J]. Chinese Science Bulletin, 2008, 53(1):131-136
doi: 10.1007/s11434-007-0518-0 URL |
[4] | 陶诗言. 冬季由印缅来的低槽对于华南天气的影响[J]. 气象学报, 1953, 23(3):172-192. |
Tao S Y. The influence of the trough from Indo-Burma on the weather of southern China in winter[J]. Acta Meteorologica Sinica, 1953, 23(3):172-192 (in Chinese) | |
[5] | 郁淑华, 何光碧, 滕家谟. 南风气流对四川盆地西部突发性暴雨影响的数值试验[J]. 成都气象学院学报, 1997, 12(4):292-297. |
Yu S H, He G B, Teng J M. Numerical experiment of the influence of southern flow on torrential rain in west Sichuan Basin[J]. Journal of Chengdu Institute of Meteorology, 1997, 12(4):292-297 (in Chinese) | |
[6] | 陈艺敏, 钱永甫. 长江中下游梅雨期降水与环流关系分析及模拟[J]. 热带气象学报, 2006, 22(1):26-33. DOI: 1004-4965(2006)01-0026-08. |
Chen Y M, Qian Y F. The analysis and numerical simulation of atmospheric circulation of Meiyu rainfall in the mid-lower reaches of the Changjiang River[J]. Journal of Tropical Meteorology, 2006, 22(1):26-33. DOI: 1004-4965(2006)01-0026-08 (in Chinese) | |
[7] | 张庆云, 吕俊梅, 杨莲梅, 等. 夏季中国降水型的年代际变化与大气内部动力过程及外强迫因子关系[J]. 大气科学, 2007, 31(6):1290-1300. DOI: 1006-9895(2007)06-1290-11. |
Zhang Q Y, Lv J M, Yang L M, et al. The interdecadal variation of precipitation pattern over China during summer and its relationship with the atmospheric internal dynamic processes and extra-forcing factors[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(6):1290-1300. DOI: 1006-9895(2007)06-1290-11 (in Chinese) | |
[8] |
Feng L, Zhang Y C. Impacts of the thermal effects of sub-grid orography on the heavy rainfall events along the Yangtze River valley in 1991[J]. Advances in Atmospheric Sciences, 2007, 24(5):881-892
doi: 10.1007/s00376-007-0881-4 URL |
[9] | 丁一汇, 王遵娅, 宋亚芳, 等. 中国南方2008 年1 月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系[J]. 气象学报, 2008, 66(5):808-825. DOI: 0577-6619/2008/66(5)-0808-25. |
Ding Y H, Wang Z Y, Song Y F, et al. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming[J]. Acta Meteorologica Sinica, 2008, 66(5):808-825. DOI: 0577-6619/2008/66(5)-0808-25 (in Chinese) | |
[10] | 王东海, 柳崇健, 刘英, 等. 2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析[J]. 气象学报, 2008, 66(3):405-422. DOI: 0577-6619/2008/66(3)-0405-22. |
Wang D H, Liu C J, Liu Y, et al. A preliminary analysis of features and causes of the snow storm event over the southern China in January 2008[J]. Acta Meteorologica Sinica, 2008, 66(3):405-422. DOI: 0577-6619/2008/66(3)-0405-22 (in Chinese) | |
[11] | 彭世球, 徐祥德, 施晓辉, 等. “世界屋脊”大地形坡面探测同化信息对下游天气的预警效应[J]. 科学通报, 2008, 53(24):3134-3138. |
Peng S Q, Xu X D, Shi X H, et al. The role of observations used data assimilation from Tibetan Plateau slope[J]. Chinese Science Bulletin, 2008, 53(24):3134-3138 (in Chinese) | |
[12] |
Kang S C, Zhang Q G, Qian Y, et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progresses and future prospects[J]. National Science Review, 2019, 6(4):796-809
doi: 10.1093/nsr/nwz031 URL |
[13] | Kang S C, Cong Z Y, Wang X P, et al. The transboundary transport of air pollutants and their environmental impacts on Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64(27):2876-2884 |
[14] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 |
[15] |
Meinshausen M, Meinshausen N, Hare W, et al. Greenhouse-gas emission targets for limiting global warming to 2℃[J]. Nature, 2009, 458(7242):1158-1162
doi: 10.1038/nature08017 URL |
[16] | 胡婷, 孙颖, 张学斌. 全球1.5和2℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26):3098-3111. DOI: 10.1360/N972016-01234. |
Hu T, Sun Y, Zhang X B. Temperature and precipitation projection at 1.5 and 2℃ increase in global mean temperature[J]. Chinese Science Bulletin, 2017, 62(26):3098-3111. DOI: 10.1360/N972016-01234 (in Chinese) | |
[17] | 翟盘茂, 余荣, 周佰铨, 等. 1.5℃增暖对全球和区域影响的研究进展[J]. 气候变化研究进展, 2017, 13(5):465-472. DOI: 10.12006/j.issn.1673-1719.2017.159. |
Zhai P M, Yu R, Zhou B Q, et al. Research progress in impact of 1.5℃ global warming on global and regional scales[J]. Climate Change Research, 2017, 13(5):465-472. DOI: 10.12006/j.issn.1673-1719.2017.159 (in Chinese) | |
[18] | 李红梅, 李林. 2℃全球变暖背景下青藏高原平均气候和极端气候事件变化[J]. 气候变化研究进展, 2015, 11(3):157-164. DOI: 10.3969/j.issn.1673-1719.2015.03.001. |
Li H M, Li L. Mean and extreme climate change on the Qinghai-Tibetan Plateau with a 2℃ global warming[J]. Climate Change Research, 2015, 11(3):157-164. DOI: 10.3969/j.issn.1673-1719.2015.03.001 (in Chinese) | |
[19] | 吴芳营, 游庆龙, 谢文欣, 等. 全球变暖1.5℃和2℃阈值时青藏高原气温的变化特征[J]. 气候变化研究进展, 2019, 15(2):130-139. DOI: 10.12006/j.issn.1673-1719.2018.175. |
Wu F Y, You Q L, Xie W X, et al. Temperature change on the Tibetan Plateau under global warming of 1.5℃ and 2℃[J]. Climate Change Research, 2019, 15(2):130-139. DOI: 10.12006/j.issn.1673-1719.2018.175 (in Chinese) | |
[20] | 丁凯熙, 张利平, 佘敦先, 等. 全球升温1.5℃和2.0℃情景下澜沧江流域极端降水的变化特征[J]. 气候变化研究进展, 2020, 16(4):466-479. |
Ding K X, Zhang L P, She D X, et al. Variation of extreme precipitation in Lancang River basin under global warming of 1.5℃ and 2.0℃[J]. Climate Change Research, 2020, 16(4):466-479 (in Chinese) | |
[21] | Qi L, He J H, Wang Y Q. The terraced thermal contrast among the Tibetan Plateau, the East Asian plain, and the western North Pacific and its impacts on the seasonal transition of East Asian climate[J]. Chinese Science Bulletin, 2014, 58(2):212-221 |
[1] | BAO Wen, DUAN An-Min, YOU Qing-Long, HU Die. Research progress on climate change and its impact on water resources over the Tibetan Plateau [J]. Climate Change Research, 2024, 20(2): 158-169. |
[2] | WANG An-Qian, TAO Hui, FANG Ze-Hua. Cropland exposure to drought in Central Asia under the 1.5℃ and 2.0℃ global warming scenarios [J]. Climate Change Research, 2022, 18(6): 695-706. |
[3] | ZHANG Xin-Ran, CHEN Hao-Ming. Assessment of warm season precipitation in the eastern slope of the Tibetan Plateau by CMIP6 models [J]. Climate Change Research, 2022, 18(2): 129-141. |
[4] | DING Kai-Xi, ZHANG Li-Ping, SHE Dun-Xian, ZHANG Qin, XIANG Jun-Wen. Variation of extreme precipitation in Lancang River basin under global warming of 1.5℃ and 2.0℃ [J]. Climate Change Research, 2020, 16(4): 466-479. |
[5] | Bo SU,Xue-Jie GAO,Cun-De XIAO. Interpretation of IPCC SR1.5 on cryosphere change and its impacts [J]. Climate Change Research, 2019, 15(4): 395-404. |
[6] | Qian-Yu ZHA,Chao GAO,Ru YANG,Yue LIU,Tian RUAN,Peng LI. Study on runoff under global warming of 1.5℃ and 2.0℃ in main stream of upper reaches of the Huaihe River [J]. Climate Change Research, 2018, 14(6): 583-592. |
[7] | Wang Yanjun, Jing Cheng, Cao Lige, Jiang Tong, Sun Hemin, Huang Jinlong. The Population Patterns over China Under the 1.5℃ and 2.0℃ Warming Targets [J]. Climate Change Research, 2017, 13(4): 327-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|