[1] |
IPCC. Climate change 2021: the physical science basis[M/OL]. Cambridge: Cambridge University Press, 2021[2023-11-24]. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf
|
[2] |
IEA. Global methane pledge[R]. IGES: Paris, 2022
|
[3] |
IPCC. Climate change 2022: mitigation of climate change[R/OL]. Cambridge: Cambridge University Press, 2022 [2023-11-24]. https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/
|
[4] |
IPCC. Special report on the ocean and cryosphere in a changing climate[R/OL]. Cambridge: Cambridge University Press, 2019 [2023-11-24]. https://www.ipcc.ch/srocc/
|
[5] |
生态环境部. 中华人民共和国气候变化第三次两年更新报告[EB/OL]. 2023 [2024-01-08]. https://www.mee.gov.cn/ywdt/hjywnews/202312/W020231229717236049262.pdf.
|
|
Ministry of Ecological Environment of People’s Republic of China. Third biennial update report on climate change in the People’s Republic of China[EB/OL]. 2023 [2024-01-08]. https://www.mee.gov.cn/ywdt/hjywnews/202312/W020231229717236049262.pdf (in Chinese)
|
[6] |
Gao J, Guan C, Zhang B, et al. Decreasing methane emissions from China’s coal mining with rebounded coal production[J]. Environmental Research Letters, 2021, 16 (12): 124037. DOI: 10.1088/1748-9326/ac38d8
|
[7] |
Sheng J, Song S, Zhang Y, et al. Bottom-up estimates of coal mine methane emissions in China: a gridded inventory, emission factors, and trends[J]. Environmental Science & Technology Letters, 2019, 6 (8): 473-478. DOI: 10.1021/acs.estlett.9b00294
|
[8] |
Lu P, Zhou L, Cheng S, et al. Main challenges of closed/abandoned coal mine resource utilization in China[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42 (22): 2822-2830. DOI: 10.1080/15567036.2019.1618992
|
[9] |
Kholod N, Evans M, Pilcher R C, et al. Global methane emissions from coal mining to continue growing even with declining coal production[J]. Journal of Cleaner Production, 2020. DOI: 10.1016/j.jclepro.2020.120489
|
[10] |
Chen D, Chen A, Hu X, et al. Substantial methane emissions from abandoned coal mines in China[J]. Environmental Research, 2022, 214: 113944. DOI: 10.1016/j.envres.2022.113944
|
[11] |
Gan Y, El-Houjeiri H M, Badahdah A, et al. Carbon footprint of global natural gas supplies to China[J]. Nature Communications, 2020, 11 (1): 824. DOI: 10.1038/s41467-020-14606-4
|
[12] |
薛明, 翁艺斌, 刘光全, 等. 石油与天然气生产过程甲烷逃逸排放检测与核算研究现状及建议[J]. 气候变化研究进展, 2019, 15 (2): 187-196. DOI: 10.12006/j.issn.1673-1719.2018.118.
|
|
Xue M, Weng Y B, Liu G Q, et al. Current status on fugitive methane emission measurements and inventory during oil and gas production[J]. Climate Change Research, 2019, 15 (2): 187-196. DOI: 10.12006/j.issn.1673-1719.2018.118 (in Chinese)
|
[13] |
Hu Y, Su M, Jiao L. Peak and fall of China’s agricultural GHG emissions[J]. Journal of Cleaner Production, 2023, 389: 136035
|
[14] |
Zhang L, Tian H, Shi H, et al. A 130year global inventory of methane emissions from livestock: trends, patterns, and drivers[J]. Global Change Biology, 2022, 28 (17): 5142-5158. DOI: 10.1111/gcb.16280
pmid: 35642457
|
[15] |
Xu P, Liao Y, Zheng Y, et al. Northward shift of historical methane emission hotspots from the livestock sector in China and assessment of potential mitigation options[J]. Agricultural and Forest Meteorology, 2019, 272-273: 1-11. DOI: 10.1016/j.agrformet.2019.03.022
|
[16] |
Duan Y, Gao Y, Zhao J, et al. Agricultural methane emissions in China: inventories, driving forces and mitigation strategies[J]. Environmental Science & Technology, 2023, 57 (36): 13292-13303
|
[17] |
Chang J, Peng S, Yin Y, et al. The key role of production efficiency changes in livestock methane emission mitigation[J]. AGU Advances, 2021, 2 (2): e2021AV000391. DOI: 10.1029/2021AV000391
|
[18] |
Hua H, Jiang S, Yuan Z, et al. Advancing greenhouse gas emission factors for municipal wastewater treatment plants in China[J]. Environmental Pollution, 2022, 295: 118648. DOI: 10.1016/j.envpol.2021.118648
|
[19] |
任佳雪, 高庆先, 陈海涛, 等. 碳中和愿景下的污水处理厂温室气体排放情景模拟研究[J]. 气候变化研究进展, 2021, 17 (4): 410-419. DOI: 10.12006/j.issn.1673-1719.2021.026.
|
|
Ren J X, Gao Q X, Chen H T, et al. Simulation research on greenhouse gas emissions from wastewater treatment plants under the vision of carbon neutrality[J]. Climate Change Research, 2021, 17 (4): 410-419. DOI: 10.12006/j.issn.1673-1719.2021.026 (in Chinese)
|
[20] |
马占云, 冯鹏, 高庆先, 等. 中国废水处理甲烷排放特征和减排潜力分析[J]. 气候变化研究进展, 2015, 11 (5): 47-56. DOI: 10.3969/j.issn.1673-1719.2015.05.008.
|
|
Ma Z Y, Feng P, Gao Q X, et al. CH4emissions and reduction potential in wastewater treatment of China[J]. Climate Change Research, 2015, 11 (5): 47-56. DOI: 10.3969/j.issn.1673-1719.2015.05.008 (in Chinese)
|
[21] |
Xu A, Wu Y H, Chen Z, et al. Towards the new era of wastewater treatment of China: development history, current status, and future directions[J]. Water Cycle, 2020, 1: 80-87. DOI: 10.1016/j.watcyc.2020.06.004
|
[22] |
Ari I, Entürk H. The relationship between GDP and methane emissions from solid waste: a panel data analysis for the G7[J]. Sustainable Production and Consumption, 2020, 23: 282-290
|
[23] |
IEA. Methane tracker[R/OL]. 2023 [2023-09-27]. https://www.iea.org/data-and-statistics/data-tools/methane-tracker
|
[24] |
Bian R, Zhang T, Zhao F, et al. Greenhouse gas emissions from waste sectors in China during 2006-2019: implications for carbon mitigation[J]. Process Safety and Environmental Protection, 2022, 161: 488-497. DOI: 10.1016/j.psep.2022.03.050
|
[25] |
Turner A J, Frankenberg C, Kort E A. Interpreting contemporary trends in atmospheric methane[J]. PNAS USA, 2019, 116 (8): 2805-2813. DOI: 10.1073/pnas.1814297116
|
[26] |
Saunois M, Stavert A R, Poulter B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12 (3): 1561-1623. DOI: 10.5194/essd-12-1561-2020
|
[27] |
Crisp D, Meijer Y, Munro R, et al. A constellation architecture for monitoring carbon dioxide and methane from space[R]. Committee on Earth Observation Satellites, 2018
|
[28] |
Global Climate Observing System (GCOS). The 2022 GCOS implementation plan[R]. World Meteorological Organization:GCOS-244, 2022
|
[29] |
Crippa M, Solazzo E, Huang G, et al. High resolution temporal profiles in the emissions database for global atmospheric research[J]. Scientific Data, 2020, 7: 121. DOI: 10.1038/s41597-020-0462-2
pmid: 32303685
|
[30] |
Chen D, Chen A, Hu X, et al. Historical trend of China’s CH4 concentrations and emissions during 2003-2020 based on satellite observations, and their implications[J]. Atmospheric Pollution Research, 2022, 13 (12): 101615. DOI: 10.1016/j.apr.2022.101615
|
[31] |
Qu Z, Jacob D J, Shen L, et al. Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments[J]. Atmospheric Chemistry and Physics, 2021, 21 (18): 14159-14175. DOI: 10.5194/acp-21-14159-2021
|
[32] |
Chen Z, Jacob D J, Nesser H, et al. Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations[J]. Atmospheric Chemistry and Physics, 2022, 22 (16): 10809-10826. DOI: 10.5194/acp-22-10809-2022
|
[33] |
姚璐, 杨东旭, 蔡兆男, 等. 面向我国碳中和、碳达峰的大气甲烷观测卫星现状与发展趋势分析[J]. 大气科学, 2022, 46 (6): 1469-1483. DOI: 10.3878/j.issn.1006-9895.2207.22096.
|
|
Yao L, Yang D X, Cai Z N, et al. Status and trend analysis of atmospheric methane satellite measurement for carbon neutrality and carbon peaking in China[J]. Chinese Journal of Atmospheric Sciences, 2022, 46 (6): 1469-1483. DOI: 10.3878/j.issn.1006-9895.2207.22096 (in Chinese)
|
[34] |
Tan H, Zhang L, Lu X, et al. An integrated analysis of contemporary methane emissions and concentration trends over China using in situ and satellite observations and model simulations[J]. Atmospheric Chemistry and Physics, 2022, 22 (2): 1229-1249. DOI: 10.5194/acp-22-1229-2022
|