Please wait a minute...
 
气候变化研究进展  2019, Vol. 15 Issue (4): 395-404    DOI: 10.12006/j.issn.1673-1719.2019.139
  气候变化影响 本期目录 | 过刊浏览 | 高级检索 |
IPCC《全球1.5℃增暖特别报告》冰冻圈变化及其影响解读
苏勃1,高学杰2,效存德1()
1 北京师范大学地表过程与资源生态国家重点实验室,北京 100875
2 中国科学院大气物理研究所气候变化研究中心,北京 100029
Interpretation of IPCC SR1.5 on cryosphere change and its impacts
Bo SU1,Xue-Jie GAO2,Cun-De XIAO1()
1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
2 Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
下载:  HTML ( 18 )   PDF (2241KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

在气候系统五大圈层中,冰冻圈对气候变化高度敏感,近几十年来气候变暖已引起全球冰川、冻土、积雪和海冰等冰冻圈要素加速退缩,进而对区域水资源、生态环境、社会经济发展和人类福祉产生了深远影响。2018年10月,IPCC在韩国仁川公布了《全球1.5℃增暖特别报告》(SR1.5)。报告较系统地呈现了关于全球1.5℃温升目标的基本科学认知,并探讨了可持续发展及消除贫困目标下加强全球响应的路径。在冰冻圈相关内容方面,报告呈现了有关全球1.5℃和2℃温升下冰冻圈(主要是海冰和多年冻土)变化及其对大气圈、水圈、生物圈、岩石圈和人类圈影响的一些亮点结论,还关注了全球1.5℃和2℃温升下冰冻圈相关的气候变化热点(区)和地球系统临界因素。报告指出,随着温度不断升高,冰冻圈及其相关要素和热点(区)面临的风险将不断增加,但将全球温升控制在1.5℃而不是2℃或更高时的风险将大大降低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏勃
高学杰
效存德
关键词:  全球1.5℃增暖  冰冻圈  影响  可持续发展    
Abstract: 

The cryosphere is highly sensitive to climate change among the five major spheres of climate system. Past decades, with the anthropogenic climate warming, has seen an accelerated retreat of the global cryosphere (including mountain glacier, frozen soil, snow cover and sea ice, etc.), which has also seriously affected global climate system and regional water resources, eco-environment, socio-economic development and human well-being. The IPCC Special Report on Global Warming of 1.5℃ (SR1.5) was issued in October 2018, it systematically presented basic scientific understanding of 1.5℃ global warming above pre-industrial levels and related global greenhouse gas emission pathways in the context of sustainable development and poverty eradication. In the cryosphere and related aspects, SR1.5 mainly projected some cryospheric changes (mainly sea ice, permafrost) and their impacts on the atmosphere, hydrosphere, biosphere, lithosphere and anthroposphere at a global average warming of 1.5℃ and higher levels of warming. It also focused on many climate change hotspots and tipping points under different global temperature goals, most of which are related to the cryosphere. As the temperature continues to rise, the risks to the cryosphere and its associated hotspots and tipping points will continue to increase. Limiting global warming to 1.5℃ compared to 2℃ or higher level is projected to lower the risks. However, frankly, SR1.5 has not given deep attention to the change and its impacts. In the future, it is necessary to deepen the research on the changes of the cryosphere and its related impacts and adaptation under different climatic scenarios, especially with the global 1.5℃ and 2℃ temperature goals and tipping points, thereby to explore a more sustainable and resilient pathway in the cryosphere affected regions.

Key words:  Global warming of 1.5℃    Cryosphere    Impacts    Sustainable development
收稿日期:  2019-06-13      修回日期:  2019-06-25           出版日期:  2019-07-30      发布日期:  2019-07-30      期的出版日期:  2019-07-30
基金资助: 国家自然科学基金委重大项目(41690145);国家自然科学基金面上项目(41671058);北京师范大学引进人才项目(12807-312232101)
通讯作者:  效存德    E-mail:  cdxiao@bnu.edu.cn
作者简介:  苏勃,男,博士研究生,geosubor@mail.bnu.edu.cn
引用本文:    
苏勃,高学杰,效存德. IPCC《全球1.5℃增暖特别报告》冰冻圈变化及其影响解读[J]. 气候变化研究进展, 2019, 15(4): 395-404.
Bo SU,Xue-Jie GAO,Cun-De XIAO. Interpretation of IPCC SR1.5 on cryosphere change and its impacts. Climate Change Research, 2019, 15(4): 395-404.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2019.139  或          http://www.climatechange.cn/CN/Y2019/V15/I4/395
图1  全球1.5℃和2℃温升下全球平均温度和降水量变化(相对于1861—1880年)[1]
表1  冰冻圈及其相关要素对不同温升的响应
表2  不同温升下的冰冻圈相关风险热点(区)[1]
表3  不同温升目标下的冰冻圈相关临界要素[1]
[1] IPCC. Special report on global warming of 1.5℃ [M]. UK: Cambridge University Press, 2018
[2] 秦大河, 姚檀栋, 丁永建 , 等. 冰冻圈科学概论[M]. 北京: 科学出版社, 2017.
Qin D H, Yao T D, Ding Y J , et al. An introduction to cryosphere science [M]. Beijing: China Science Publishing & Media Ltd., 2017 (in Chinese)
[3] Schuur E A G, McGuire A D , et al Schadel C . Climate change and the permafrost carbon feedback[J]. Nature, 2015,520:171-179
[4] IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013
[5] Krasting J P, Broccoli A J, Dixon K W , et al. Future changes in Northern Hemisphere snowfall[J]. Journal of Climate, 2013,26(20):7813-7828
[6] Huss M, Bookhagen B, Huggel C , et al. Toward mountains without permanent snow and ice[J]. Earth’s Future, 2017,5:418-435
[7] Marzeion B, Kaser G, Maussion F , et al. Limited influence of climate change mitigation on short-term glacier mass loss[J]. Nature Climate Change, 2018,8:305-308
[8] Fürst J J, Goelzer H, Huybrechts P . Ice-dynamic projects of the Greenland ice sheet in response to atmospheric and oceanic warming[J]. The Cryosphere, 2015,9(3):1039-1062
[9] Marx A, Kumar R, Thober S , et al. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3℃[J]. Hydrology and Earth System Sciences, 2018,22(2):1017-1032
[10] Lantuit H, Pollard W H . Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon territory, Canada[J]. Geomorphology, 2008,95:84-102
[11] Xiao C D, Wang S J, Qin D H . A preliminary study of cryosphere service function and value evaluation[J]. Advances in Climate Change Research, 2015 (6):181-187
[12] 效存德, 苏勃, 王晓明 , 等. 冰冻圈功能及其服务衰退的级联风险[J]. 科学通报, 2019. DOI: 10.1360/N972018-01314.
doi: 10.1360/N972018-01314
Xiao C D, Su B, Wang X M , et al. Cascading risks to the deterioration in cryospheric functions and services[J]. Chinese Science Bulletin, 2019. DOI: 10.1360/N972018-01314 (in Chinese)
doi: 10.1360/N972018-01314
[13] 王世金, 效存德 . 全球冰冻圈灾害高风险区: 影响与态势[J]. 科学通报, 2019,64. DOI: 10.1360/N972018-01124.
doi: 10.1360/N972018-01124
Wang S J, Xiao C D . Global cryospheric disaster at high risk areas: impacts and trend[J]. Chinese Science Bulletin, 2019,64. DOI: 10.1360/N972018-01124 (in Chinese)
doi: 10.1360/N972018-01124
[1] 高帅,李梦宇,段茂盛,王灿. 《巴黎协定》下的国际碳市场机制:基本形式和前景展望[J]. 气候变化研究进展, 2019, 15(3): 222-231.
[2] 谭凯炎,周广胜,任三学,耿金剑. 气候变化可能不会引起我国北方冬小麦营养品质下降[J]. 气候变化研究进展, 2019, 15(3): 282-289.
[3] 杨建平,丁永建,方一平. 中国冰冻圈变化的适应研究:进展与展望[J]. 气候变化研究进展, 2019, 15(2): 178-186.
[4] 崔杨, 陈正洪. 光伏电站对局地气候的影响研究进展[J]. 气候变化研究进展, 2018, 14(6): 593-601.
[5] 陈正洪,何飞,崔杨,张雪婷. 近20年来风电场(群)对气候的影响研究进展[J]. 气候变化研究进展, 2018, 14(4): 381-391.
[6] 张超, 田荣湘, 茆慧玲, 张志非, 申紫薇. 青藏高原中东部地区地表感热通量的时空变化特征[J]. 气候变化研究进展, 2018, 14(2): 127-136.
[7] 卞韬, 任国玉, 张立霞. 城市化对石家庄站近地面风速趋势的影响[J]. 气候变化研究进展, 2018, 14(1): 21-30.
[8] 张海玲, 刘昌新, 王铮. 气候变化综合评估模型的损失函数研究进展[J]. 气候变化研究进展, 2018, 14(1): 40-49.
[9] 岳溪柳, 於琍, 黄玫, 吴绍洪, 周波涛, 徐影. 人类活动影响下的北京地区气候承载力初步评估[J]. 气候变化研究进展, 2017, 13(6): 517-525.
[10] 翟盘茂, 余荣, 周佰铨, 陈阳, 郭建平, 卢燕宇. 1.5℃增暖对全球和区域影响的研究进展[J]. 气候变化研究进展, 2017, 13(5): 465-472.
[11] 张永香, 巢清尘, 郑秋红, 黄磊. 美国退出《巴黎协定》对全球气候治理的影响[J]. 气候变化研究进展, 2017, 13(5): 407-414.
[12] 王怡, 刘冠秋, 齐熙, 潘丹琳, 祁新华. 高温热浪支付意愿人群分异及其影响因素——以福州市为例[J]. 气候变化研究进展, 2017, 13(2): 172-180.
[13] 刘宇, 温丹辉, 王毅, 孙振清. 天津碳交易试点的经济环境影响评估研究——基于中国多区域一般均衡模型TermCO2[J]. 气候变化研究进展, 2016, 12(6): 561-570.
[14] 胡雷. 我国城镇化对二氧化碳排放的影响机理研究[J]. 气候变化研究进展, 2016, 12(4): 341-347.
[15] 李雪梅, 高培, 李倩, 唐宏. 中国天山积雪对气候变化响应的多通径分析[J]. 气候变化研究进展, 2016, 12(4): 303-312.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn