|
|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (5): 544-557.doi: 10.12006/j.issn.1673-1719.2024.097
• Changes in Climate System • Previous Articles Next Articles
DU Jun1,2(
), GAO Jia-Jia1,2, CHEN Tao2,3, Tsewang 3, Pakgordolma 4
Received:2024-05-13
Revised:2024-07-05
Online:2024-09-30
Published:2024-08-28
DU Jun, GAO Jia-Jia, CHEN Tao, Tsewang , Pakgordolma . Spatio-temporal variation of vapor pressure deficit and impact factors in the Yalung Zangbo River basin from 1981 to 2023[J]. Climate Change Research, 2024, 20(5): 544-557.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2024.097
| [1] | Chiang F, Mazdiyasni O, AghaKouchak A. Amplified warming of droughts in southern United States in observations and model simulations[J]. Science Advances, 2018, 4 (8): eaat2380 |
| [2] | Mao K B, Chen J M, Li Z L, et al. Global water vapor content decreases from 2003 to 2012: an analysis based on MODIS data[J]. Chinese Geographical Science, 2017, 27 (1): 1-7 |
| [3] | Barkhordarian A, Bowman K W, Cressie N, et al. Emergent constraints on tropical atmospheric aridity-carbon feedbacks and the future of carbon sequestration[J]. Environmental Research Letters, 2021, 16: 114008 |
| [4] | Ficklin D L, Novick K A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2017, 122: 2061-2079 |
| [5] | 程梦琦, 左志燕, 蔺邹兴, 等. 全球陆地饱和水汽压差的年代际突变[J]. 中国科学: 地球科学, 2023, 53 (7): 1536-1549. |
| Cheng M Q, Zuo Z Y, Lin Z X, et al. The decadal abrupt change in the global land vapor pressure deficit[J]. Science China Earth Sciences, 2023, 66 (7): 1521-1534 (in Chinese) | |
| [6] | Zhang H M, Wu B F, Yan N N, et al. An improved satellite-based approach for estimating vapor pressure deficit from MODIS data[J]. Journal of Geophysical Research: Atmospheres, 2015, 119 (21): 12256-12271 |
| [7] | Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3 (1): 52-58 |
| [8] | Zhong Z Q, He B, Wang Y P, et al. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity[J]. Science Advances, 2023, 9: eadf3166 |
| [9] | He B, Chen C, Lin S R, et al. Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks[J]. National Science Review, 2022, 9: eadf3166:1-9 |
| [10] | 郭仲英, 吴英楠, 刘晓英, 等. 不同冠层阻力模型对冬小麦返青-成熟期蒸散量估算的影响[J]. 中国农业气象, 2023, 44 (1): 1-12. |
| Guo Z Y, Wu Y N, Liu X Y, et al. Effect of different canopy resistance models on estimation of winter wheat evapotranspiration during regreening-maturing stage[J]. Chinese Journal of Agrometeorology, 2023, 44 (1): 1-12 (in Chinese) | |
| [11] |
Yuan W P, Zheng Y, Piao S L, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances, 2019, 5 (8): 1396-1407
doi: 10.1126/sciadv.aax1396 pmid: 31453338 |
| [12] | 桑玉强, 李龙, 施光耀, 等. 太行低山区荆条耗水特征及其与参考作物蒸散量的关系[J]. 中国农业气象, 2021, 42 (8): 657-665. |
| Sang Y Q, Li L, Shi G Y, et al. Water consumption characteristics of Vitex Negundo in Hilly region of Taihang Mountains and its relationship to reference evapotranspiration[J]. Chinese Journal of Agrometeorology, 2021, 42 (8): 657-665 (in Chinese) | |
| [13] | Zhang S, Tao F L, Zhang Z. Spatial and temporal changes in vapor pressure deficit and their impacts on crop yields in China during 1980-2008[J]. Journal of Meteorology Research, 2017, 31 (4): 800-808 |
| [14] | Lobell D B, Hammer G L, McLean G, et al. The critical role of extreme heat for maize production in the United States[J]. Nature Climate Change, 2013, 3 (5): 497-501 |
| [15] | 赵富杰. 土壤水分和饱和水汽压差对中国地区玉米产量的影响及其预估[D]. 南京: 南京信息工程大学, 2023. |
| Zhao F J. Effects of soil moisture and vapor pressure deficit on maize yield in China and its prediction[D]. Nanjing: Nanjing University of Information Science & Technology, 2023 (in Chinese) | |
| [16] | Novick K A, Ficklin D L, Stoy P C, et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes[J]. Nature Climate Change, 2016, 6 (11): 1023-1027 |
| [17] | 袁瑞瑞, 黄萧霖, 郝璐. 近40年中国饱和水汽压差时空变化及影响因素分析[J]. 气候与环境研究, 2021, 26 (4): 413-424. |
| Yuan R R, Huang X L, Hao L. Spatio-temporal variation of vapor pressure deficit and impact factors in China in the past 40 years[J]. Climatic and Environmental Research, 2021, 26 (4): 413-424 (in Chinese) | |
| [18] | 宁梓妤, 徐宪立, 杨东, 等. 中国西南地区饱和水汽压差的年际变化及其影响因素[J]. 农业现代化研究, 2022, 43 (1): 172-179. |
| Ning Z Y, Xu X L, Yang D, et al. Temporal variation of vapor pressure deficit and its influencing factors in Southwest China[J]. Research of Agricultural Modernization, 2022, 43 (1): 172-179 (in Chinese) | |
| [19] |
李素雲, 祁栋林, 温婷婷, 等. 1961—2020年青海省饱和水汽压差变化特征及影响因子分析[J]. 干旱区研究, 2023, 40 (2): 173-181.
doi: 10.13866/j.azr.2023.02.02 |
|
Li S Y, Qi D L, Wen T T, et al. The variation characteristics and influencing factors of vapor pressure deficit in Qinghai province from 1961 to 2020[J]. Arid Zone Research, 2023, 40 (2): 173-181 (in Chinese)
doi: 10.13866/j.azr.2023.02.02 |
|
| [20] | Matsoukas C, Benas N, Hatzianastassiou N, et al. Potential evaporation trends over land between 1983-2008: driven by radiative fluxes or vapour-pressure deficit?[J]. Atmospheric Chemistry and Physics, 2011, 11 (15): 7601-7616 |
| [21] | Hao L, Huang X L, Qin M S, et al. Ecohydrological processes explain urban dry island effects in a wet region, southern China[J]. Water Resources Research, 2018, 54 (9): 6757-6771 |
| [22] | 陈斌, 李海东, 曹学章, 等. 基于SPOT-VGT NDVI的雅鲁藏布江流域植被动态变化[J]. 山地学报, 2016, 34 (2): 249-256. |
| Chen B, Li H D, Cao X Z, et al. Dynamic changes in vegetation coverage in the Yarlung Zangbo River basin based on SPOT-VGT NDVI[J]. Journal of Mountain Research, 2016, 34 (2): 249-256 (in Chinese) | |
| [23] |
陈斌, 李海东, 曹学章, 等. 雅鲁藏布江流域植被格局与NDVI分布的空间响应[J]. 中国沙漠, 2015, 35 (1): 120-128.
doi: 10.7522/j.issn.1000-694X.2014.00170 |
|
Chen B, Li H D, Cao X Z, et al. Vegetation pattern and spatial distribution of NDVI in the Yarlung Zangbo River basin of China[J]. Journal of Desert Research, 2015, 35 (1): 120-128 (in Chinese)
doi: 10.7522/j.issn.1000-694X.2014.00170 |
|
| [24] | Li D, Li J, Zhang L L, et al. Variations in the key hydrological elements of the Yarlung Zangbo River basin[J]. Water Supply, 2019, 19 (4): 1088-1096 |
| [25] | Xuan W D, Xu Y P, Fu Q, et al. Hydrological responses to climate change in Yarlung Zangbo River basin, Southwest China[J]. Journal of Hydrology, 2021, 597: 125761 |
| [26] | 包文, 段安民, 游庆龙, 等. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20 (2): 1-9. |
| Bao W, Duan A M, You Q L, et al. Research progress on climate change and its impact on water resources over the Tibetan Plateau[J]. Climate Change Research, 2024, 20 (2): 1-9 (in Chinese) | |
| [27] | 徐宗学, 班春广, 张瑞. 雅鲁藏布江流域径流演变规律与归因分析[J]. 水科学进展, 2022, 33 (4): 519-530. |
| Xu Z X, Ban C G, Zhang R. Evolution laws and attribution analysis in the Yarlung Zangbo River basin[J]. Advances in Water Science, 2022, 33 (4): 519-530 (in Chinese) | |
| [28] | 赤曲, 周顺武, 多典洛珠, 等. 1961—2017年雅鲁藏布江河谷地区夏季气候暖干化趋势[J]. 气候与环境研究, 2020, 25 (3): 281-291. |
| Chi Q, Zhou S W, Duodian L Z, et al. Warming and drying trend of summer climate along the Yarlung Zangbo River valley area from 1961 to 2017[J]. Climatic and Environmental Research, 2020, 25 (3): 281-291 (in Chinese) | |
| [29] | 刘浏, 牛乾坤, 衡静霞, 等. 雅鲁藏布江流域干湿转换特征及植被动态响应[J]. 农业工程学报, 2020, 36 (2): 175-184. |
| Liu L, Niu Q K, Heng J X, et al. Characteristics of dry and wet conversion and dynamic vegetation response in Yarlung Zangbo River basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (2): 175-184 (in Chinese) | |
| [30] | 杨浩, 崔春光, 王晓芳, 等. 气候变暖背景下雅鲁藏布江流域降水变化研究进展[J]. 暴雨灾害, 2019, 38 (6): 565-575. |
| Yang H, Cui C G, Wang X F, et al. Research progresses of precipitation variation over the Yarlung Zangbo River basin under global climate warming[J]. Torrential Rain and Disasters, 2019, 38 (6): 565-575 (in Chinese) | |
| [31] |
张仪辉, 刘昌明, 梁康, 等. 雅鲁藏布江流域降水时空变化特征[J]. 地理学报, 2022, 77 (3): 603-618.
doi: 10.11821/dlxb202203008 |
|
Zhang Y H, Liu C M, Liang K, et al. Spatio-temporal variation of precipitation in the Yarlung Zangbo River basin[J]. Acta Geographica Sinica, 2022, 77 (3): 603-618 (in Chinese)
doi: 10.11821/dlxb202203008 |
|
| [32] | 刘勇, 张文, 魏良帅. 雅鲁藏布江中游石冰川发育特征及潜在成灾机制分析[J]. 西北地质, 2024, 57 (1): 44-54. |
| Liu Y, Zhang W, Wei L S. Developmental characteristics and potential disaster mechanism of rock glaciers in the middle reaches of the Yarlung Zangbo River[J]. Northwestern Geology, 2024, 57 (1): 44-54 (in Chinese) | |
| [33] | 萧峻琼, 郝洁, 鞠琴, 等. 雅鲁藏布江奴下站以上流域冰川融水变化[J]. 水文, 2021, 41 (6): 79-84. |
| Xiao J Q, Hao J, Ju Q, et al. Changes of glacier meltwater volume in the basin above Nuxia station on the Yarlung Zangbo River[J]. Journal of China Hydrology, 2021, 41 (6): 79-84 (in Chinese) | |
| [34] | 王璐. 2000—2016年中国境内雅鲁藏布江流域冰川变化研究[D]. 西安: 西北大学, 2021. |
| Wang L. Glacier Variations in the Yarlung Zangbo River basin in China from 2000 to 2016[D]. Xi’an: Northwest University, 2021 (in Chinese) | |
| [35] |
谭秋阳, 程磊, 徐宗学, 等. 1979—2017年雅鲁藏布江流域雪深时空分布特征及其影响因素分析[J]. 冰川冻土, 2021, 43 (4): 1049-1059.
doi: 10.7522/j.issn.1000-0240.2021.0070 |
| Tan Q Y, Cheng L, Xu Z X, et al. Spatiotemporal distribution of snow cover depth and its driving factors in the Yarlung Zangbo River basin, 1979-2017[J]. Journal of Glaciology and Geocryology, 2021, 43 (4): 1049-1059 (in Chinese) | |
| [36] | Li C H, Su F G, Yang D Q, et al. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001-2014[J]. International Journal of Climatology, 2018, 38 (2): 708-728 |
| [37] | Guo D L, Wang H J. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J]. Journal of Geophysical Research: Atmospheres, 2013, 118 (11): 5216-5230 |
| [38] | 杨大文, 王宇涵, 唐莉华, 等. 雅鲁藏布江上游径流变化及影响因素分析[J]. 水力发电学报, 2023, 42 (3): 41-49. |
| Yang D W, Wang Y H, Tang L H, et al. Analysis of runoff changes and its causes under climate change in upper Yarlung Zangbo River basin[J]. Journal of Hydroelectric Engineering, 2023, 42 (3): 41-49 (in Chinese) | |
| [39] |
Grossiord C, Buckley T N, Cernusak L A, et al. Plant responses to rising vapor pressure deficit[J]. New Phytologist, 2020, 226 (6): 1550-1566
doi: 10.1111/nph.16485 pmid: 32064613 |
| [40] | 李得宴, 杨维芳, 高志钰, 等. 不同饱和水汽压模型对GNSS反演可降水量的影响分析[J]. 全球定位系统, 2020, 45 (6): 55-63. |
| Li D Y, Yang W F, Gao Z Y, et al. Analysis of influence of different saturated water vapor pressure models on GNSS inversion precipitable water[J]. GNSS World of China, 2020, 45 (6): 55-63 (in Chinese) | |
| [41] | 魏凤英. 现代气候统计诊断与预测技术 (第2版)[M]. 北京: 气象出版社, 2007. |
| Wei F Y. Statistics technology of diagnose and forecast of modern climate (2nd Ed)[M]. Beijing: China Meteorological Press, 2007 (in Chinese) | |
| [42] | 徐建华. 现代地理学中的数学方法[M]. 北京: 高等教育出版社, 2002. |
| Xu J H. Mathematical methods in modern geography[M]. Beijing: Higher Education Press, 2002 (in Chinese) | |
| [43] | 刘慧媛, 邹磊, 邢万里. 1961—2018年海河流域极端降水时空演变特征[J]. 水电能源科学, 2021, 9 (12): 1-6. |
| Liu H Y, Zou L, Xing W L. Temporal and spatial variation of extreme precipitation in Haihe River basin during 1961-2018[J]. Water Resources and Power, 2021, 9 (12): 1-6 (in Chinese) | |
| [44] | 林振山, 邓自旺. 子波气候诊断技术的研究[M]. 北京: 气象出版社, 1999. |
| Lin Z S, Deng Z W. A study of sub-wave climate diagnostic techniques[M]. Beijing: China Meteorological Press, 1999 (in Chinese) | |
| [45] | 史继清, 豆永丽, 张歆平, 等. 西藏青稞生育期干旱强度变化特征分析[J]. 中国农业气象, 2023, 44 (9): 834-844. |
| Shi J Q, Dou Y L, Zhang X P, et al. Analysis on change characteristics of drought intensity during the growth period of highland barley in Tibet[J]. Chinese Journal of Agrometeorology, 2023, 44 (9): 834-844 (in Chinese) | |
| [46] | 唐启义. DPS数据处理系统: 实验设计、统计分析及数据挖掘 (第2版)[M]. 北京: 科学出版社, 2010. |
| Tang Q Y. DPS data processing system: experimental design, statistical analysis and data mining developed (Second edition)[M]. Beijing: Science Press, 2010 (in Chinese) | |
| [47] | Irmak S, Kabenge I, Skaggs K E, et al. Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River basin, Central Nebraska-USA[J]. Journal of Hydrology, 2012, 420-421: 228-244 |
| [48] | Hu Z M, Yu G R, Fu Y L, et al. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China[J]. Global Change Biology, 2008, 14 (7): 1609-1619 |
| [49] |
Lu H B, Qin Z C, Lin S R, et al. Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency[J]. Nature Communications, 2022, 13: 1653
doi: 10.1038/s41467-022-29009-w pmid: 35351892 |
| [50] | 杜军, 胡军, 刘依兰, 等. 近25年雅鲁藏布江中游蒸发皿蒸发量及其影响因素的变化[J]. 自然资源学报, 2008, 23 (1): 120-126. |
| Du J, Hu J, Liu Y L, et al. Changes of pan evaporation and its impact factors in middle reaches of the Yarlung Zangbu River over Tibet in recent 25 year[J]. Journal of Natural Resources, 2008, 23 (1): 120-126 (in Chinese) | |
| [51] | 段娅楠, 季漩, 郭若愚, 等. 雅鲁藏布江流域潜在蒸散发的气候敏感性及其变化的主导因子分析[J]. 水土保持研究, 2020, 27 (2): 261-268. |
| Duan Y N, Ji X, Guo R Y, et al. Analysis on the sensitivity and dominant meteorological factors identification of potential evapotranspiration variation in Yarlung Zangbo River basin[J]. Research of Soil and Water Conservation, 2020, 27 (2): 261-268 (in Chinese) | |
| [52] | 王大为, 赵成章, 方锋, 等. 石羊河流域水分利用效率及其对饱和水汽压差的响应[J]. 生态学报, 2023, 43 (8): 3090-3102. |
| Wang D W, Zhao C Z, Fang F, et al. Spatial-temporal dynamics of water use efficiency and responding to vapor pressure deficit in Shiyang River basin, northwestern China[J]. Acta Ecologica Sinica, 2023, 43 (8): 3090-3102 (in Chinese) | |
| [53] | 张美玲, 鹿翠华, 陈连侠, 等. 1961—2010年鲁南地区参考作物蒸散量时空分异特征及气候归因[J]. 山西农业大学学报 (自然科学版), 2015, 35 (6): 582-589. |
| Zhang M L, Lu C H, Chen L X, et al. Variation characteristics and climate explanation of spatial distribution and temporal variation of reference crop evapotranspiration in south of Shandong from 1961 to 2010[J]. Journal of Shanxi Agricultural University (Nature Science Edition), 2015, 35 (6): 582-589 (in Chinese) | |
| [54] |
党宏忠, 却晓娥, 冯金超, 等. 晋西黄土区苹果树边材液流速率对环境驱动的响应[J]. 应用生态学报, 2019, 30 (3): 823-831.
doi: 10.13287/j.1001-9332.201903.015 |
| Dang H Z, Que X E, Feng J C, et al. Response of sap flow rate of apple trees to environmental factors in Loess Platea of western Shanxi province, China[J]. Chinese Journal of Applied Ecology, 2019, 30 (3): 823-831 (in Chinese) | |
| [55] | 韩磊, 何俊, 齐拓野, 等. 宁夏河东沙区侧柏冠层气孔导度对环境因子的响应及其模拟[J]. 生态学杂志, 2018, 37 (9): 2862-2868. |
| Han L, He J, Qi T Y, et al. Responses and modeling of canopy stomatal conductance of Platycladus orientalis to environmental factors in Hedong sandy land, Ningxia[J]. Chinese Journal of Ecology, 2018, 37 (9): 2862-2868 (in Chinese) | |
| [56] | Lian X, Piao S L, Chen A P, et al. Multifaceted characteristics of dryland aridity changes in a warming world[J]. Nature Reviews Earth & Environment, 2021, 2 (3): 232-250 |
| [1] | ZHANG Jing-Yu, CAO Long. Simulated response of the ocean and land carbon cycles to positive and negative CO2 emissions [J]. Climate Change Research, 2024, 20(4): 416-427. |
| [2] | LUO Xiao-Yu, CAO Xing-Yu, SONG Zhi-Qian. Comparison of carbon emissions throughout the entire lifecycle of buildings between China and Japan [J]. Climate Change Research, 2024, 20(2): 220-230. |
| [3] | TIAN Pei-Ning, LIANG Xiao, GUAN Yu-Jie, ZHAO Yi-Xin, MAO Bao-Hua, XUE Ting. Whole life cycle carbon emission and power generation structure transformation pathway planning of China’s power [J]. Climate Change Research, 2024, 20(1): 97-106. |
| [4] | LIU Chun-Zhen, CHAO Qing-Chen, WANG Shou-Rong, LIU Zhi-Yu. The research progress of hydrologic cycle in hydrometeorology [J]. Climate Change Research, 2023, 19(1): 1-10. |
| [5] | LIU Junguo, CHEN He, TIAN Zhan. Interpretation of IPCC AR6: climate change and water security [J]. Climate Change Research, 2022, 18(4): 405-413. |
| [6] | YAN Shu-Qi, LI Su-Mei, LYU He, CHEN Sha, LIU Ying-Ying, WANG Hong-Tao, LIU Hui-Zheng, CHEN Qian-Li. Water footprint analysis of electricity production in Xinjiang Uygur Autonomous Region based on a hybrid LCA model and its changes under carbon neutralization target [J]. Climate Change Research, 2022, 18(3): 294-304. |
| [7] | FENG Guo-Hui, CUI Hang, CHANG Sha-Sha, HUANG Kai-Liang, WANG Xi-Ru. Analysis of carbon emissions and influencing factors of near-zero energy buildings [J]. Climate Change Research, 2022, 18(2): 205-214. |
| [8] | LYU Chen, LIU Hao, XU Shao-Dong, YANG Nan, DU Meng-Bing, CAI Bo-Feng. Study on fine aviation carbon dioxide emission factors based on the flight phase [J]. Climate Change Research, 2022, 18(2): 196-204. |
| [9] | CAO Long. Climate system response to carbon dioxide removal [J]. Climate Change Research, 2021, 17(6): 664-670. |
| [10] | CAO Long. Climate system response to solar radiation modification [J]. Climate Change Research, 2021, 17(6): 671-684. |
| [11] | JIANG Da-Bang, WANG Na. Water cycle changes: interpretation of IPCC AR6 [J]. Climate Change Research, 2021, 17(6): 699-704. |
| [12] | ZHANG Meng-Rong, CHEN Sha, LI Su-Mei. Case analysis of GHG emission and reduction from food consumption of Beijing relish restaurant based on life cycle [J]. Climate Change Research, 2021, 17(2): 140-150. |
| [13] | Xue-Zong TAO,Xiu-Zhi ZHANG,Ji-Hong CHEN. Evaluating the benefits of energy saving and emission reduction from port’s container handling equipment upgrades [J]. Climate Change Research, 2019, 15(2): 197-205. |
| [14] | Jiao-Yue WANG, Yao-Peng HAN, Chang-Chun SONG, Feng-Ming XI. Effects of freezing-thawing cycles on soil organic carbon mineralization in the peatland ecosystems from continuous permafrost zone, Great Hinggan Mountains [J]. Climate Change Research, 2018, 14(1): 59-66. |
| [15] | Cui Tiening, Lu Ting . Exploratory Study on Voluntary Emission Reduction System of Urban Public Bicycle— Take Beijing as an Example [J]. Climate Change Research, 2016, 12(2): 112-117. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|