|
Climate Change Research ›› 2021, Vol. 17 ›› Issue (6): 664-670.doi: 10.12006/j.issn.1673-1719.2021.169
Special Issue: IPCC第六次评估报告WGI解读专栏
• Special Section on the Sixth Assessment Report of IPCC: WGI • Previous Articles Next Articles
Received:
2021-08-05
Revised:
2021-09-21
Online:
2021-11-30
Published:
2021-10-09
CAO Long. Climate system response to carbon dioxide removal[J]. Climate Change Research, 2021, 17(6): 664-670.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2021.169
Fig. 1 Carbon cycle response to instantaneous carbon dioxide (CO2) removal from the atmosphere. (a) Atmospheric CO2 concentration, (b) change in land carbon reservoir, (c) change in ocean carbon reservoir. (Results are shown for simulations with seven CMIP6 Earth system models and the UVic ESCM model of intermediate complexity forced with 100 Pg C instantaneously removed from the atmosphere)
Fig. 2 Delayed climate response to CDR-caused net negative CO2 emissions[1]. (a) Normalized ensemble mean anomaly of key variables, (b) global surface air temperature, (c) precipitation, (d) September Arctic sea-ice area, (e) Atlantic meridional overturning circulation (AMOC), (f) thermostatic sea level. (In (a), the key variables include atmospheric CO2, surface air temperature, precipitation, thermosteric sea-level rise, global sea-ice area, Northern Hemisphere sea-ice area in September, and AMOC. In (b)-(f), red lines represent the phase of CO2 ramp-up, blue lines represent the phase of CO2 ramp-down, brown lines represent the period after CO2 has returned to pre-industrial level, and black lines represent the multi-model mean. For all of the segments in (b)-(f), the solid colored lines are CMIP6 models, and the dashed lines are other models. Vertical dashed lines indicate peak CO2 and when CO2 again reaches pre-industrial value. The number of CMIP6 and non-CMIP6 models used is indicated in each panel)
[1] | IPCC. Climate change 2021: the physical science basis [M]. Cambridge: Cambridge University Press, 2021 |
[2] |
Jan C M, William F L, Max W C, et al. Negative emissions. Part 1: research landscape and synjournal[J]. Environmental Research Letters, 2018, 13(6): 063001. DOI: 10.1088/1748-9326/aabf9b
doi: 10.1088/1748-9326/aabf9b URL |
[3] |
Rickels W, Reith F, Keller D, et al. Integrated assessment of carbon dioxide removal[J]. Earth’s Future, 2018, 6(3): 565-582. DOI: 10.1002/2017ef000724
doi: 10.1002/2017ef000724 URL |
[4] |
Rogelj J, Popp A, Calvin K V, et al. Scenarios towards limiting global mean temperature increase below 1.5℃[J]. Nature Climate Change, 2018, 8(4): 325-332. DOI: 10.1038/s41558-018-0091-3
doi: 10.1038/s41558-018-0091-3 |
[5] | The Royal Society. Geoengineering the climate: science, governance and uncertainty [R]. London: RS Policy Document 10/09, The Royal Society, 2009: 82 |
[6] |
IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013: 571-658. DOI: 10.1017/CBO9781107415324.016
doi: 10.1017/CBO9781107415324.016 |
[7] |
Keller D P, Lenton A, Scott V, et al. The carbon dioxide removal model intercomparison project (CDRMIP): rationale and experimental protocol for CMIP6[J]. Geoscientific Model Development, 2018, 11(3): 1133-1160. DOI: 10.5194/gmd-11-1133-2018
doi: 10.5194/gmd-11-1133-2018 URL |
[8] |
Zickfeld K, Azevedo D, Mathesius S, et al. Asymmetry in the climate: carbon cycle response to positive and negative CO2 emissions[J]. Nature Climate Change, 2021, 11: 613-617. DOI: 10.1038/s41558-021-01061-2
doi: 10.1038/s41558-021-01061-2 URL |
[9] |
Tokarska K B, Zickfeld K. The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change[J]. Environmental Research Letters, 2015, 10(9): 094013. DOI: 10.1088/1748-9326/10/9/094013
doi: 10.1088/1748-9326/10/9/094013 URL |
[10] |
Jackson R B, Milne J, Littleton E W, et al. Simulating the Earth system response to negative emissions[J]. Environmental Research Letters, 2016, 11(9): 095012. DOI: 10.1088/1748-9326/11/9/095012
doi: 10.1088/1748-9326/11/9/095012 URL |
[11] |
MacDougall A H. Reversing climate warming by artificial atmospheric carbon dioxide removal: can a holocene-like climate be restored?[J]. Geophysical Research Letters, 2013, 40(20): 5480-5485
doi: 10.1002/2013GL057467 URL |
[12] |
Zickfeld K, MacDougall A H, Matthews H D. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions[J]. Environmental Research Letters, 2016, 11(5): 055006. DOI: 10.1088/1748-9326/11/ 5/055006
doi: 10.1088/1748-9326/11/ 5/055006 URL |
[13] |
Schwinger J, Tjiputra J. Ocean carbon cycle feedbacks under negative emissions[J]. Geophysical Research Letters, 2018, 45(10): 5062-5070. DOI: 10.1029/2018gl077790
doi: 10.1029/2018gl077790 URL |
[14] |
Jackson L C, Schaller N, Smith R S, et al. Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases[J]. Climate Dynamics, 2014, 42(11-12): 3323-3336
doi: 10.1007/s00382-013-1842-5 URL |
[15] |
Sgubin G, Swingedouw D, Drijfhout S, et al. Multimodel analysis on the response of the AMOC under an increase of radiative forcing and its symmetrical reversal[J]. Climate Dynamics, 2015, 45(5-6): 1429-1450. DOI: 10.1007/s00382-014-2391-2
doi: 10.1007/s00382-014-2391-2 URL |
[16] |
Jeltsch-Thömmes A, Stocker T F, Joos F. Hysteresis of the Earth system under positive and negative CO2 emissions[J]. Environmental Research Letters, 2020, 15(12): 124026. DOI: 10.1088/1748-9326/abc4af
doi: 10.1088/1748-9326/abc4af URL |
[17] |
Oschlies A, Pahlow M, Yool A, et al. Climate engineering by artificial ocean upwelling: channeling the sorcerer’s apprentice[J]. Geophysical Research Letters, 2010, 37(4): 1-5. DOI: 10.1029/2009gl041961
doi: 10.1029/2009gl041961 |
[18] |
Keller D P, Feng E Y, Oschlies A. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario[J]. Nature Communications, 2014, 5(1): 3304. DOI: 10.1038/ncomms4304
doi: 10.1038/ncomms4304 URL |
[19] |
González M F, Ilyina T, Sonntag S, et al. Enhanced rates of regional warming and ocean acidification after termination of large-scale ocean alkalization[J]. Geophysical Research Letters, 2018, 45(14): 7120-7129. DOI: 10.1029/2018gl077847
doi: 10.1029/2018gl077847 URL |
[20] | Boyd P, Vivian C, Boettcher M, et al. High level review of a wide range of proposed marine geoengineering techniques [R/OL]. 2019 [2021-08-05]. http://www.gesamp.org/publications/high-level-review-of-a-wide-range-of-proposed-marine-geoengineering-techniques |
[21] |
Keller D P. Marine climate engineering[M]//Salomon M, Markus T. Handbook on marine environment protection: science, impacts and sustainable management. Cham: Springer, 2019: 261-276. DOI: 10.1007/978-3-319-60156-4_13
doi: 10.1007/978-3-319-60156-4_13 |
[22] |
Hauck J, Köhler P, Wolf-Gladrow D, et al. Iron fertilization and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment[J]. Environmental Research Letters, 2016, 11(2): 024007. DOI: 10.1088/1748-9326/11/2/024007
doi: 10.1088/1748-9326/11/2/024007 URL |
[23] |
Tran G T, Oschlies A, Keller D P. Comparative assessment of climate engineering scenarios in the presence of parametric uncertainty[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(4). DOI: 10.1029/2019ms001787
doi: 10.1029/2019ms001787 |
[24] |
Bach L T, Gill S J Rickaby R E M, et al. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems[J]. Frontiers in Climate, 2019, 1. DOI: 10.3389/fclim.2019.00007
doi: 10.3389/fclim.2019.00007 |
[25] |
Pete S, Steven J D, Felix C, et al. Biophysical and economic limits to negative CO2 emissions[J]. Nature Climate Change, 2016, 6(1): 42-45, 50. DOI: 10.1038/nclimate2870
doi: 10.1038/nclimate2870 URL |
[26] |
NASEM (National Academies of Sciences, Engineering, and Medicine). Negative emissions technologies and reliable sequestration: a research agenda [M]. Washington, DC: The National Academies Press, 2019: 510. DOI: 10.17226/25259
doi: 10.17226/25259 |
[27] |
Fuss S, Lamb W F, Callaghan M W, et al. Negative emissions. Part 2: costs, potentials and side effects[J]. Environmental Research Letters, 2018, 13(6): 063002. DOI: 10.1088/1748-9326/aabf9f
doi: 10.1088/1748-9326/aabf9f URL |
[1] | DING Yong-Jian, ZHANG Shi-Qiang, CHEN Ren-Sheng, QIN Jia, ZHAO Qiu-Dong, LIU Jun-Feng, YANG Yong, HE Xiao-Bo, CHANG Ya-Ping, SHANGGUAN Dong-Hui, HAN Tian-Ding, WU Jin-Kui, LI Xiang-Ying. A review of the impacts of climate change on cryospheric hydrological processes [J]. Climate Change Research, 2025, 21(1): 1-21. |
[2] | QIN Zhuo-Fan, LIAO Hong, DAI Hui-Bin. A review of the impacts of climate change on severe air pollution events [J]. Climate Change Research, 2025, 21(1): 56-68. |
[3] | LYU Xue-Du, CHEN Jia-Qi, GE Hui, ZHU Yi-Dan. Development of climate finance: practices and prospects [J]. Climate Change Research, 2025, 21(1): 78-90. |
[4] | CHEN Deliang, TAN Xian-Chun, PENG Zhe, YAN Hong-Shuo, CHENG Yong-Long. Opportunities and challenges of artificial intelligence in climate research and services [J]. Climate Change Research, 2024, 20(6): 669-681. |
[5] | GAO Xiang. Climate finance in the context of international law [J]. Climate Change Research, 2024, 20(6): 799-807. |
[6] | ZHU Lei, ZHANG Li-Zhong, JIANG Ying, XU Jian-Feng, HUANG Yan, SUN Shu-Xin. Climate adaptation in industry: a review of research progress [J]. Climate Change Research, 2024, 20(6): 721-735. |
[7] | OU YANG Zhi-Yun, ZHANG Guan-Shi, YING Ling-Xiao. Overview of the impacts of climate change on ecosystem distribution and functions across the Tibetan Plateau [J]. Climate Change Research, 2024, 20(6): 699-710. |
[8] | LU Chun-Hui, YUAN Jia-Shuang, HUANG Lei, ZHANG Yong-Xiang. Key scientific issues in the Global Stocktake from the perspective of IPCC and their implications for China [J]. Climate Change Research, 2024, 20(6): 736-746. |
[9] | ZHOU Ze-Yu, WANG Jun-Hua, CAO Ying. Assessment of global climate change adaptation progress and related recommendations [J]. Climate Change Research, 2024, 20(6): 764-772. |
[10] | NIU Zhen-Guo, JING Yu-Hang, ZHANG Dong-Qi, ZHANG Bo. An overview and the outlook for wetland ecosystems in the Qinghai-Tibetan Plateau under climate change [J]. Climate Change Research, 2024, 20(5): 509-518. |
[11] | WU Pei-Ze, CHEN Sha, LIU Ying-Ying, LI Xiao-Tong, DU Zhan-Xia, CUI Shu-Fen, JIANG Ke-Jun. Low Emissions Analysis Platform (LEAP): applications and challenges in addressing climate change [J]. Climate Change Research, 2024, 20(5): 611-623. |
[12] | Deji-Yuzhen , Lhaba , Basang-Wangdui , Baima-Yucuo , Danzeng-Yiga , Pingcuo-Wangdan , Deji-Yangzong . Changes in lakes in the southwest part of Nagqu, Tibet and their response to climate change in the past 50 years [J]. Climate Change Research, 2024, 20(5): 534-543. |
[13] | ZHANG Jing-Yu, CAO Long. Simulated response of the ocean and land carbon cycles to positive and negative CO2 emissions [J]. Climate Change Research, 2024, 20(4): 416-427. |
[14] | PAN Xiao-Bin, LIU Shang-Wen. Research on the path of transition finance legal system of China under the background of addressing climate change [J]. Climate Change Research, 2024, 20(4): 465-474. |
[15] | BAO Wen, DUAN An-Min, YOU Qing-Long, HU Die. Research progress on climate change and its impact on water resources over the Tibetan Plateau [J]. Climate Change Research, 2024, 20(2): 158-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|