|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (2): 220-230.doi: 10.12006/j.issn.1673-1719.2023.195
• Greenhouse Gas Emissions • Previous Articles Next Articles
LUO Xiao-Yu1,2(), CAO Xing-Yu1, SONG Zhi-Qian1
Received:
2023-09-11
Revised:
2023-12-23
Online:
2024-03-30
Published:
2024-01-15
LUO Xiao-Yu, CAO Xing-Yu, SONG Zhi-Qian. Comparison of carbon emissions throughout the entire lifecycle of buildings between China and Japan[J]. Climate Change Research, 2024, 20(2): 220-230.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2023.195
![]() |
Table 7 Comparison of building materials consumption per unit area and carbon emission factors of similar building materials in Chinese and Japanese cases
![]() |
[1] | 刘志仁. 论“双碳”背景下中国碳排放管理的法治化路径[J]. 法律科学, 2022 (3): 94-104. |
Liu Z R. On the legalization path of carbon emission management in China under the background of “Dual Carbon”[J]. Legal Science, 2022 (3): 94-104 (in Chinese) | |
[2] | 张时聪, 王珂, 杨芯岩, 等. 建筑部门碳达峰碳中和排放控制目标研究[J]. 建筑科学, 2021, 37 (8): 189-198. |
Zhang S C, Wang K, Yang X Y, et al. Research on carbon peak and carbon neutrality emission control objectives in the construction sector[J]. Building Science, 2021, 37 (8): 189-198 (in Chinese) | |
[3] | 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2022[M]. 北京: 中国建筑工业出版社, 2022. |
Tsinghua University Building Energy Efficiency Research Center. Annual development research report on building energy efficiency in China, 2022[M]. Beijing: China Architecture & Building Press, 2022 (in Chinese) | |
[4] | 鲁旭旻, 隋杰礼, 韩兆鹏, 等. 基于建筑节能策略差异化对比: 以德国、日本为例[J]. 能源与节能, 2021, 194 (11): 52-56. |
Lu X M, Sui J L, Han Z P, et al. Differentiated comparison of building energy conservation strategies: taking Germany and Japan as examples[J]. Energy and Energy Conservation, 2021, 194 (11): 52-56 (in Chinese) | |
[5] | Zhang S F, Ma M D, Li K, et al. Historical carbon abatement in the commercial building operation: China versus the US[J]. Energy Economics, 2022 (105): 105712 |
[6] | 齐新竹, 史立刚, 卡琳·克罗克福斯, 等. 中芬居住建筑生命周期碳排放测算及环境影响对比研究[J]. 世界建筑, 2023, 391 (1): 104-109. |
Qi X Z, Shi L G, Crokfuss K, et al. Comparative study on life cycle carbon emissions and environmental impact of residential buildings in China and Finland[J]. World Architecture, 2023, 391 (1): 104-109 (in Chinese) | |
[7] | 徐天昊, 胡姗, 杨子艺, 等. 中国瑞典建筑碳排放对比及对中国建筑碳中和路径的启示[J]. 气候变化研究进展, 2023, 19 (3): 305-319. |
Xu T H, Hu S, Yang Z Y, et al. Comparison of carbon emissions from buildings in China and Sweden and its implications for the carbon neutrality path of Chinese buildings[J]. Climate Change Research, 2023, 19 (3): 305-319 (in Chinese) | |
[8] | Yokoo N, Oka T, Yokoyama K, et al. Comparison of embodied energy/CO2 of office buildings in China and Japan[J]. Journal of Civil Engineering and Architecture, 2015, 9: 300-307 |
[9] | 檀姊静, 柳天祥, 赵敬源, 等. 碳中和背景下中日建筑节能标准对比研究[J]. 建筑科学, 2023, 39 (2): 171-182, 214. |
Tan Z J, Liu T X, Zhao J Y, et al. Comparative study on building energy efficiency standards between China and Japan under the background of carbon neutrality[J]. Architecture Science, 2023, 39 (2): 171-182, 214 (in Chinese) | |
[10] | 郭诚, 张兴惠, 周浩, 等. 中日建筑全生命周期碳排放对比分析[J]. 施工技术, 2023, 52 (6): 126-133. |
Guo C, Zhang X H, Zhou H, et al. Comparative analysis of carbon emissions throughout the entire life cycle of buildings in China and Japan[J]. Construction Technology, 2023, 52 (6): 126-133 (in Chinese) | |
[11] | 陈华盾, 赵子豪, 刘红波, 等. 基于过程的建筑全生命周期碳排放核算问题及对策[C]. 第二十二届全国现代结构工程学术研讨会论文集, 2022. |
Chen H D, Zhao Z H, Liu H B, et al. The problem and countermeasures of process based carbon emission accounting for the entire life cycle of buildings[C]. Proceedings of the 22nd National Academic Symposium on Modern Structural Engineering, 2022 (in Chinese) | |
[12] | 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. GB/T 51366—2019建筑碳排放计算标准 [S]. 北京: 中国工业出版社, 2019. |
Ministry of Housing and Urban Rural Development of the People’s Republic of China, State Administration for Market Regulation. GB/T 51366—2019 standard for calculating building carbon emissions [S]. Beijing: China Industrial Press, 2019 (in Chinese) | |
[13] | 日本建筑学会. 建物のLCA指針[M]. 日本: 日本建筑学会, 2006. |
Architectural Institute of Japan. LCA guidelines for buildings[M]. Japan: Architectural Institute of Japan, 2006 (in Japanese) | |
[14] | 毛希凯. 建筑生命周期碳排放预测模型研究[D]. 天津: 天津大学, 2018. |
Mao X K. Research on carbon emission prediction model for building life cycle[D]. Tianjin:Tianjin University, 2018 (in Chinese) | |
[15] |
Yang X, Hu M, Wu J, et al. Building-information-modeling enabled life cycle assessment: a case study on carbon footprint accounting for a residential building in China[J]. Journal of Cleaner Production, 2018, 183: 729-743
doi: 10.1016/j.jclepro.2018.02.070 URL |
[16] | 熊宝玉. 住宅建筑全生命周期碳排放量测算研究[D]. 深圳: 深圳大学, 2015. |
Xiong B Y. Research on the calculation of carbon emissions throughout the life cycle of residential buildings[D]. Shenzhen: Shenzhen University, 2015 (in Chinese) | |
[17] | 薛邵琴. 基于减碳技术的建筑全生命周期环境: 经济性评价[D]. 北京: 北京交通大学, 2022. |
Xue S Q. Environmental and economic evaluation of the whole life cycle of buildings based on carbon reduction technology[D]. Beijing: Beijing Jiaotong University, 2022 (in Chinese) | |
[18] | 白路恒. 公共建筑全生命周期碳排放预测模型研究[D]. 天津: 天津大学, 2019. |
Bai L H. Research on carbon emission prediction model for the whole life cycle of public buildings[D]. Tianjin:Tianjin University, 2019 (in Chinese) | |
[19] | 高项荣, 李春丽. 基于BIM-LCA的建筑物碳排放测算与实例研究[J]. 山西能源学院学报, 2023, 36 (1): 87-89. |
Gao X R, Li C L. Calculation and case study of building carbon emissions based on BIM-LCA[J]. Journal of Shanxi Energy University, 2023, 36 (1): 87-89 (in Chinese) | |
[20] | 赵若楠, 董莉, 白璐, 等. 光伏行业生命周期碳排放清单分析[J]. 中国环境科学, 2020, 40 (6): 2751-2757. |
Zhao R N, Dong L, Bai L, et al. Analysis of life cycle carbon emissions inventory in the photovoltaic industry[J]. Chinese Environmental Science, 2020, 40 (6): 2751-2757 (in Chinese) | |
[21] |
Hou G F, Sun H H, Jiang Z Y, et al. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China[J]. Applied Energy, 2016, 164: 882-890
doi: 10.1016/j.apenergy.2015.11.023 URL |
[22] |
Liu F, van den Bergh J C J M. Differences in CO2 emissions of solar PV production among technologies and regions: application to China, EU and USA[J]. Energy Policy, 2020, 138: 111234
doi: 10.1016/j.enpol.2019.111234 URL |
[23] | Yıldız G, Çalış B, Gürel A E, et al. Investigation of life cycle CO2emissions of the polycrystalline and cadmium telluride PV panels[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 14: 100343 |
[24] |
Rao H K, Gemechu E, Thakur U, et al. Life cycle assessment of high-performance monocrystalline titanium dioxide nanorod-based perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111288
doi: 10.1016/j.solmat.2021.111288 URL |
[25] | 董兆. 结合室内环境和碳排放的长三角地区建筑性能评价研究[D]. 浙江: 浙江大学, 2021. |
Dong Z. Research on building performance evaluation in the Yangtze River delta region combining indoor environment and carbon emissions[D]. Zhejiang: Zhejiang University, 2021 (in Chinese) | |
[26] | 张又升. 建筑物生命周期二氧化碳减量评估[D]. 台南: “国立”成功大学, 2002. |
Zhang Y S. Assessment of carbon dioxide reduction during the life cycle of buildings[D]. Tainan: ‘National’ Chenggong University, 2002 (in Chinese) | |
[27] | 王华. 公共机构运行阶段碳排放研究[D]. 北京: 北方工业大学, 2021. |
Wang H. Research on carbon emissions during the operation stage of public institutions[D]. Beijing: Northern Polytechnical University, 2021 (in Chinese) | |
[28] | 张艳姣. 典型铝合金型材产品的碳足迹分析[C]// 中国建材检验认证集团股份有限公司.中国建筑材料联合会金属复合材料分会, 2018. |
Zhang Y J. Carbon footprint analysis of typical aluminum alloy profile products[C]// China Building Materials Inspection and Certification Group Co., Ltd. Metal Composite Materials Branch of China Building Materials Federation, 2018 (in Chinese) | |
[29] | 朱凡颖. 建筑功能改造设计要点探究[J]. 中华民居(下旬刊), 2014, 116 (5): 62. |
Zhu F Y. Exploration of key points in architectural functional renovation design[J]. Chinese Residential Buildings, 2014, 116 (5): 62 (in Chinese ) | |
[30] | 世界金属导报. 信息园地[J]. 武钢技术, 2012, 50 (1): 14, 21, 41, 47, 62. |
World Metals. Information park[J]. Wuhan Iron and Steel Technology, 2012, 50 (1): 14, 21, 41, 47, 62 (in Chinese) | |
[31] | 吕敬文. 钢铁产业共生网络的铁/碳代谢研究[D]. 兰州: 兰州大学, 2019. |
Lv J W. Research on iron/carbon metabolism in the symbiotic network of the steel industry[D]. Lanzhou: Lanzhou University, 2019 (in Chinese) | |
[32] | 胡欣, 龙惟定, 马九贤. CEC: 一种有效的空调系统能耗评价方法[J]. 暖通空调, 1999, 3 (29): 1-3. |
Hu X, Long W D, Ma J X. CEC: an effective energy consumption evaluation method for air conditioning systems[J]. Journal of HV&AC, 1999, 3 (29): 1-3 (in Chinese) | |
[33] | Jiang Y. State-space method for analysis of the thermal behavior of room and calculation of air conditioning load[J]. ASHRAE Transactions, 1982, 88: 122-132 |
[34] | 于韶山. 基于DeST洁净手术部空调系统能耗模拟分析[D]. 河北: 河北工程大学, 2016. |
Yu S S. Energy consumption simulation analysis of air conditioning system in DeST clean surgical department[D]. Hebei: Hebei Engineering University, 2016 (in Chinese) | |
[35] | 国家发展和改革委应对气候变化司. 2010年中国区域电网平均二氧化碳排放因子[R]. 国家发展和改革委应对气候变化司, 2013. |
Climate Change Response Department of the National Development and Reform Commission. The average carbon dioxide emission factor of China’s regional power grid in 2010[R]. Climate Change Response Department of the National Development and Reform Commission, 2013 (in Chinese) | |
[36] | 中国电力企业联合会. 中国电力行业年度发展报告2021[M]. 北京: 中国市场出版社, 2021. |
China Electric Power Enterprise Federation. Annual development report of China’s power industry in 2021[M]. Beijing: China Market Press, 2021 (in Chinese) | |
[37] | 生态环境部办公厅. 关于做好2022年企业温室气体排放报告管理相关重点工作的通知[EB/OL]. 2022 [2022-03-15]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202203/t20220315_971468.html. |
Office of the Ministry of Ecology and Environment. Notice on key work related to the management of greenhouse gas emission reports for enterprises in 2022[EB/OL]. 2022 [2022-03-15]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202203/t20220315_971468.html (in Chinese) | |
[38] | 生态环境部办公厅. 关于做好2023—2025年发电行业企业温室气体排放报告管理有关工作的通知[EB/OL]. 2022 [2023-02-17]. http://big5.mee.gov.cn/gate/big5/www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html. |
Office of the Ministry of Ecology and Environment. Notice on doing a good job in the management of greenhouse gas emission reports for enterprises in the power generation industry from 2023 to 2025 [EB/OL]. 2022 [2023-02-17]. http://big5.mee.gov.cn/gate/big5/www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html (in Chinese) | |
[39] | 国立环境研究所. 年度(令和2年度)の温室効果ガス排出量(速报値)について[EB/OL]. 2022 [2022-05-30]. https://www.nies.go.jp/whatsnew/20220415/20220415-2.html. |
National Institute for Environmental Studies. Greenhouse gas emissions in the second year of fiscal year[EB/OL]. 2022 [2022-05-30]. https://www.nies.go.jp/whatsnew/20220415/20220415-2.html (in Japanese) | |
[40] | 崔鹏. 建筑物生命周期碳排放因子库构建及应用研究[D]. 南京: 东南大学, 2015. |
Cui P. Research on the construction and application of building life cycle carbon emission factor library[D]. Nanjing: Southeast University, 2015 (in Chinese) | |
[41] | 日本ビルエネルギー総合管理技術協仝. 建築物エネルギー消費量調査報告第43報[R/OL]. 2020 [2022-05-30]. http://www.bema.or.jp/20200417.html. |
The Building-Energy Manager’s Association of Japan. Survey report on building energy consumption (No.43)[R/OL]. 2020 [2022-05-30]. http://www.bema.or.jp/20200417.html (in Japanese) | |
[42] | 杜祥琬, 钱易, 陈勇, 等. 我国固体废物分类资源化利用战略研究[J]. 中国工程科学, 2017, 19 (4): 27-32. |
Du X W, Qian Y, Chen Y, et al. Research on the strategy of solid waste classification and resource utilization in China[J]. Chinese Engineering Science, 2017, 19 (4): 27-32 (in Chinese) | |
[43] | Duan H B, Mang J Y, Huan Q F. Encouraging the environmentally sound management C8D waste in China: an integrative review and research agenda[J]. Renewable and Sustainable Energy Reviewers, 2015 (43): 611-620 |
[44] | 贾亚瑞. 建筑垃圾预处理对再生粗骨料混凝土工作性能的试验研究[D]. 河北: 河北工程大学, 2021. |
Jia Y R. Experimental study on the workability of recycled coarse aggregate concrete treated with construction waste pretreatment[D]. Hebei: Hebei Engineering University, 2021 (in Chinese) | |
[45] | 罗鑫, 曹国巍, 陈炜宁, 等. 国外建筑废弃物处理设备发展动态[J]. 建筑机械化, 2011 (增刊): 21-23. |
Luo X, Cao G W, Chen W N, et al. Development trends of foreign construction waste treatment equipment[J]. Construction Mechanization, 2011 (S1): 21-23 (in Chinese) | |
[46] | Maung K N, Yoshida T, Liu G, et al. Assessment of secondary aluminum reserves of nations[J]. Resources, Conservation & Recycling, 2017, 126: 34-41 |
[47] | 環境省. 建設廃棄物の現状[R/OL]. 2021 [2023-05-01]. https://www.env.go.jp/content/900532468.pdf. |
Ministry of Environment. Present state of construction waste[R/OL]. 2021 [2023-05-01]. https://www.env.go.jp/content/900532468.pdf (in Japanese) | |
[48] | 邱熙然, 张琳. 辉煌十年有色志: 再生金属篇[J]. 资源再生, 2022, 243 (10): 16-21. |
Qiu X R, Zhang L. Brilliant ten year nonferrous metal chronicle: recycled metal chapter[J]. Resource Regeneration, 2022, 243 (10): 16-21 (in Chinese) |
[1] | TONG Rui-Yong, WEI Run-Bin, WU Jin-Yan, MAO Bao-Hua, TIAN Pei-Ning. Influence of power generation structure on carbon emission factor of high-speed railway in operation period [J]. Climate Change Research, 2025, 21(1): 116-124. |
[2] | WEI Xi-Kai, TAN Xiao-Shi, RUAN Jia-Tong, LIN Ming, QIN Lu, SUN Guo-Li, XIANG Ke-Qi, CHU Yao-Hui. Research on carbon emission factors of regional and provincial power grids from 2005 to 2021 [J]. Climate Change Research, 2024, 20(3): 337-350. |
[3] | LIU Yuan-Xin, HE Shuo, JIANG Ya-Jing, LUO Xu, YUAN Jia-Hai. Spatial-temporal decomposition of carbon emissions in China’s four major urban agglomerations [J]. Climate Change Research, 2024, 20(2): 231-241. |
[4] | TIAN Pei-Ning, LIANG Xiao, GUAN Yu-Jie, ZHAO Yi-Xin, MAO Bao-Hua, XUE Ting. Whole life cycle carbon emission and power generation structure transformation pathway planning of China’s power [J]. Climate Change Research, 2024, 20(1): 97-106. |
[5] | ZHANG Gui-Chi, LI Xiao-Mei, YANG Feng, SUN Rui-Ling. Working ideas of urban reduction of pollution and carbon emissions management: based on great inventory management system [J]. Climate Change Research, 2024, 20(1): 75-84. |
[6] | YANG Zi-Yi, HU Shan, XU Tian-Hao, YAN Da, JIANG Yi. Method and application of global building operation energy use and carbon emissions comparison in the context of carbon neutrality [J]. Climate Change Research, 2023, 19(6): 749-760. |
[7] | WANG Wen-Zhi, TANG Guo. Carbon emission reduction effects of provincial intermediate trade from the perspective of value-added driven [J]. Climate Change Research, 2023, 19(6): 771-785. |
[8] | DING Li-Yuan, WANG Yan-Hua, WANG Ke. The synergistic effect of carbon emission trading on pollution and carbon reduction and the influence mechanism [J]. Climate Change Research, 2023, 19(6): 786-798. |
[9] | ZHANG Chun-Li. Research on setting framework of carbon emissions control industry’s benchmarks under carbon emissions trading [J]. Climate Change Research, 2023, 19(5): 645-652. |
[10] | YANG Hong-Xiong, YANG Guang. Spatial-temporal evolution and influencing factors of provincial carbon emissions in China based on modernization [J]. Climate Change Research, 2023, 19(4): 457-471. |
[11] | GE Qiu-Yu, XU Yi-Nuo, QIU Rong-Zu, HU Xi-Sheng, ZHANG Yuan-Yuan, LIU Na-Cui, ZHANG Lan-Yi. Scenario simulation of urban passenger transportation carbon reduction based on system dynamics [J]. Climate Change Research, 2023, 19(3): 357-370. |
[12] | TAN Xian-Chun, CHENG Yong-Long, GU Bai-He. New progress in controlling the total volume of carbon emissions in China: a review on the allocation of provincial carbon emission allowances [J]. Climate Change Research, 2023, 19(1): 63-73. |
[13] | LIU Ji-Yi, ZHANG Yi-Chen, ZHANG Dong-Yu, FU Lin, CAO Ying. Analysis and enlightenment of the latest European Effort Sharing Regulation [J]. Climate Change Research, 2022, 18(6): 756-763. |
[14] | FENG Guo-Hui, CUI Hang, CHANG Sha-Sha, HUANG Kai-Liang, WANG Xi-Ru. Analysis of carbon emissions and influencing factors of near-zero energy buildings [J]. Climate Change Research, 2022, 18(2): 205-214. |
[15] | HE Feng, LIU Zheng-Yan, XING You-Kai, GAO Yu-Bing, MAO Xian-Qiang. Co-control effect evaluation of the energy saving and emission reduction measures in Chinese cement industry [J]. Climate Change Research, 2021, 17(4): 400-409. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|