|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (1): 97-106.doi: 10.12006/j.issn.1673-1719.2023.177
• Greenhouse Gas Emissions • Previous Articles Next Articles
TIAN Pei-Ning1,2(), LIANG Xiao1(
), GUAN Yu-Jie1,2, ZHAO Yi-Xin1, MAO Bao-Hua1,2, XUE Ting1
Received:
2023-08-17
Revised:
2023-10-08
Online:
2024-01-30
Published:
2024-01-02
TIAN Pei-Ning, LIANG Xiao, GUAN Yu-Jie, ZHAO Yi-Xin, MAO Bao-Hua, XUE Ting. Whole life cycle carbon emission and power generation structure transformation pathway planning of China’s power[J]. Climate Change Research, 2024, 20(1): 97-106.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2023.177
Fig. 4 The impact of the decline in the whole life cycle carbon emission factors of each power on the whole life cycle carbon emission factors of power
[1] | CEADs (Carbon Emission Accounts & Datasets). 中国碳核算数据[R/OL]. 2022 [2023-02-10]. https://www.ceads.net.cn/data/nation/. |
CEADs (Carbon Emission Accounts & Datasets). China carbon accounting data[R/OL]. 2022 [2023-02-10]. https://www.ceads.net.cn/data/nation/ (in Chinese) | |
[2] | 田佩宁, 毛保华, 童瑞咏, 等. 我国交通运输行业及不同运输方式的碳排放水平和强度分析[J]. 气候变化研究进展, 2023, 19 (3): 347-356. |
Tian P N, Mao B H, Tong R Y, et al. Analysis of carbon emission levels and intensity of my country’s transportation industry and different modes of transportation[J]. Climate Change Research, 2023, 19 (3): 347-356 (in Chinese) | |
[3] | 关雎文, 周琪, 毛保华. 碳排放控制的国际比较及经验借鉴[J]. 交通运输系统工程与信息, 2022, 22 (6): 281-290. |
Guan J W, Zhou Q, Mao B H. International comparison and experience reference of carbon emission control[J]. Transportation System Engineering and Information, 2022, 22 (6): 281-290 (in Chinese) | |
[4] | 舒印彪, 赵勇, 赵良, 等. “双碳”目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43 (5): 1663-1672. |
Shu Y B, Zhao Y, Zhao L, et al. My country’s energy and electricity low-carbon transformation path under the “dual carbon” goal[J]. Chinese Journal of Electrical Engineering, 2023, 43 (5): 1663-1672 (in Chinese) | |
[5] | 赵玉荣, 刘含眸, 李伟, 等. “双碳”目标下我国电力部门低碳转型政策研究[J]. 气候变化研究进展, 2023, 19 (5): 634-644. DOI: 10.12006/j.issn.1673-1719.2023.041. |
Zhao Y R, Liu H M, Li W, et al. Research on the low-carbon transformation policy of my country’s power sector under the “dual carbon” goal[J]. Climate Change Research, 2023, 19 (5): 634-644. DOI: 10.12006/j.issn.1673-1719.2023.041 (in Chinese) | |
[6] | 张静, 杨萌, 张伟, 等. “双碳”背景下河南省电力行业中长期控煤降碳路径[J/OL]. 环境科学, 2023 [2023-08-17]. https://doi.org/10.13227/j.hjkx.202303086. |
Zhang J, Yang M, Zhang W, et al. Medium and long-term coal control and carbon reduction paths for the power industry in Henan province under the background of “dual carbon”[J/OL]. Environmental Science, 2023 [2023-08-17]. https://doi.org/10.13227/j.hjkx.202303086 (in Chinese) | |
[7] | 王彦哲, 周胜, 姚子麟, 等. 中国煤电生命周期二氧化碳和大气污染物排放相互影响建模分析[J]. 中国电力, 2021, 54 (8): 128-135. |
Wang Y Z, Zhou S, Yao Z L, et al. Modeling analysis of the mutual impact of CO2 and air pollutant emissions during the life cycle of coal-fired power plants in China[J]. China Electric Power, 2021, 54 (8): 128-135 (in Chinese) | |
[8] | Zhao X, Cai Q, Zhang S, et al. The substitution of wind power for coal-fired power to realize China’s CO2 emissions reduction targets in 2020 and 2030[J]. Energy, 2017: 120 |
[9] | Jung H, Ryoo S, Kang Y. Life cycle environmental impact assessment of Taean coal power plant with CO2 capture module[J]. Journal of Cleaner Production, 2022: 357 |
[10] | 李雨晨, 秦宇, 杨柳, 等. 长江上游大中型水库碳排放量估算与分析: 以IPCC国家温室气体清单指南为基础[J]. 湖泊科学, 2023, 35 (1): 131-145. |
Li Y C, Qin Y, Yang L, et al. Estimation and analysis of carbon emissions from large and medium-sized reservoirs in the upper reaches of the Yangtze River: based on the IPCC National Greenhouse Gas Inventory Guidelines[J]. Lake Science, 2023, 35 (1): 131-145 (in Chinese) | |
[11] | 黄跃群, 刘耀儒, 许文彬, 等. 水利水电工程全生命周期碳排放研究: 以犬木塘工程为例[J]. 清华大学学报 (自然科学版), 2022, 62 (8): 1366-1373. |
Huang Y Q, Liu Y R, Xu W B, et al. Research on carbon emissions throughout the life cycle of water conservancy and hydropower projects: taking the Quanmutang Project as an example[J]. Journal of Tsinghua University (Natural Science Edition), 2022, 62 (8): 1366-1373 (in Chinese) | |
[12] | 夏欣, 钟权. 水电站生命周期温室气体排放研究综述[J]. 中国农村水利水电, 2020 (11): 188-192, 198. |
Xia X, Zhong Q. Review of research on life cycle greenhouse gas emissions of hydropower stations[J]. China Rural Water Conservancy and Hydropower, 2020 (11): 188-192, 198 (in Chinese) | |
[13] | 穆献中, 徐琴, 刘宇, 等. 基于生命周期评价的核电环境影响分析[J]. 安全与环境学报, 2022, 22 (5): 2775-2781. |
Mu X Z, Xu Q, Liu Y, et al. Analysis of nuclear power environmental impact based on life cycle assessment[J]. Journal of Safety and Environment, 2022, 22 (5): 2775-2781 (in Chinese) | |
[14] | Wang L, Wang Y, Du H, et al. A comparative life-cycle assessment of hydro-, nuclear and wind power: a China study[J]. Applied Energy, 2019: 249 |
[15] | 马艺, 段华波, 李强峰, 等. 基于生命周期分析的风电场GHGs减排效益[J]. 深圳大学学报 (理工版), 2020, 37 (6): 653-660. |
Ma Y, Duan H B, Li Q F, et al. GHGs emission reduction benefits of wind farms based on life cycle analysis[J]. Journal of Shenzhen University (Science and Technology Edition), 2020, 37 (6): 653-660 (in Chinese) | |
[16] | Li H, Jiang H, Dong K, et al. A comparative analysis of the life cycle environmental emissions from wind and coal power: evidence from China[J]. Journal of Cleaner Production, 2020, 248 (C): 119-192 |
[17] | Mello G, Ferreira D, Robaina M. Wind farms life cycle assessment review: CO2emissions and climate change[J]. Energy Reports, 2020, 6 (S8): 214-219 |
[18] |
Zhang Y, Dong X, Wang X, et al. The relationship between the low-carbon industrial model and human well-being: a case study of the electric power industry[J]. Energies, 2023, 16 (3): 1357-1376
doi: 10.3390/en16031357 URL |
[19] |
Schultz H, Carvalho M. Design, greenhouse emissions, and environmental payback of a photovoltaic solar energy system[J]. Energies, 2022, 15 (16): 6098-6121
doi: 10.3390/en15166098 URL |
[20] | Pu Y, Wang P, Wang Y, et al. Environmental effects evaluation of photovoltaic power industry in China on life cycle assessment[J]. Journal of Cleaner Production, 2021: 278 |
[21] | IPCC. IPCC 2006 guidelines for national greenhouse gas inventories[R/OL]. 2006 [2023-08-17]. https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ |
[22] | 樊金璐, 吴立新, 任世华. 碳减排约束下的燃煤发电与天然气发电成本比较研究[J]. 中国煤炭, 2016, 42 (12): 14-17, 23. |
Fan J L, Wu L X, Ren S H. Comparative study on the cost of coal-fired power generation and natural gas power generation under carbon emission reduction constraints[J]. China Coal, 2016, 42 (12): 14-17, 23 (in Chinese) | |
[23] |
Song Q B, Wang Z S, Li J H, et al. Comparative life cycle GHG emissions from local power generation using heavy oil, natural gas, and MSW incineration in Macau[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2450-2459
doi: 10.1016/j.rser.2017.06.051 URL |
[24] | 中国城市温室气体工作组. 中国产品全生命周期温室气体排放系数库[EB/OL]. 2023 [2023-10-21]. http://lca.cityghg.com/pages/product-view/2436. |
China Urban Greenhouse Gas Working Group. Chinese product life cycle greenhouse gas emission coefficient database[EB/OL]. 2023 [2023-10-21]. http://lca.cityghg.com/pages/product-view/2436 (in Chinese) | |
[25] | Gao C K, Na H M, Song K H, et al. Environmental impact analysis of power generation from biomass and wind farms in different locations[J]. Renewable and Sustainable Energy Reviews, 2019: 102 |
[26] | 党乐, 佟敏, 崔亚茹, 等. 12 MW生物质直燃发电系统能耗和温室气体排放分析[J]. 可再生能源, 2022, 40 (5): 586-592. |
Dang L, Tong M, Cui Y R, et al. Analysis of energy consumption and greenhouse gas emissions of 12 MW biomass direct combustion power generation system[J]. Renewable Energy, 2022, 40 (5): 586-592 (in Chinese) | |
[27] | 李哲, 王殿常. 从水库温室气体研究到水电碳足迹评价: 方法及进展[J]. 水利学报, 2022, 53 (2): 139-153. |
Li Z, Wang D C. From reservoir greenhouse gas research to hydropower carbon footprint assessment: methods and progress[J]. Journal of Hydraulic Engineering, 2022, 53 (2): 139-153 (in Chinese) | |
[28] | International Hydropower Association. 2018 hydropower status report[R/OL]. 2018 [2023-10-21]. https://www.hydropower.org/publications/2018-hydropower-status-report |
[29] | Centre of National Material Life Cycle Assessment. Material life cycle assessment database Sino-center[EB/OL]. 2023 [2023-10-21]. https://sinocenter.com.br |
[30] | 姜子英, 潘自强, 邢江, 等. 中国核电能源链的生命周期温室气体排放研究[J]. 中国环境科学, 2015, 35 (11): 3502-3510. |
Jiang Z Y, Pan Z Q, Xing J, et al. Research on life cycle greenhouse gas emissions of China’s nuclear power energy chain[J]. Chinese Environmental Science, 2015, 35 (11): 3502-3510 (in Chinese) | |
[31] | 张俊翔, 朱庚富. 光伏发电和燃煤发电的生命周期评价比较研究[J]. 环境科学与管理, 2014, 39 (10): 86-90. |
Zhang J X, Zhu G F. Comparative study on life cycle assessment of photovoltaic power generation and coal-fired power generation[J]. Environmental Science and Management, 2014, 39 (10): 86-90 (in Chinese) | |
[32] | 廖夏伟, 谭清良, 张雯, 等. 中国发电行业生命周期温室气体减排潜力及成本分析[J]. 北京大学学报(自然科学版), 2013, 49 (5): 885-891. |
Liao X W, Tan Q L, Zhang W, et al. Life cycle greenhouse gas emission reduction potential and cost analysis of China’s power generation industry[J]. Journal of Peking University Natural Science Edition, 2013, 49 (5): 885-891 (in Chinese) | |
[33] | 国家能源局. 全国电力工业统计数据[EB/OL]. 2022 [2023-10-21]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm. |
National Energy Administration. National electric power industry statistics[EB/OL]. 2022 [2023-10-21]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm (in Chinese) | |
[34] | 全球能源互联网发展合作组织. 中国2030年能源电力发展规划研究及2060年展望[EB/OL]. 2021 [2023-08-17]. https://news.bjx.com.cn/html/20210319/1142777-1.shtml. |
Global Energy Internet Development Cooperation Organization. Research on China’s 2030 energy and power development planning and outlook to 2060 [EB/OL]. 2021 [2023-08-17]. https://news.bjx.com.cn/html/20210319/1142777-1.shtml (in Chinese) | |
[35] | 育娲人口研究. 中国人口预测报告2023版[EB/OL]. 2023 [2023-08-17]. https://file.c-ctrip.com/files/6/yuwa/0R70l12000ap4aa8z4B12.pdf. |
Yuwa Population Research. China population forecast report 2023 edition[EB/OL]. 2023 [2023-08-17]. https://file.c-ctrip.com/files/6/yuwa/0R70l12000ap4aa8z4B12.pdf (in Chinese) | |
[36] | 中国电力企业联合会. 中国电力统计年鉴. 2022[M]. 北京: 中国统计出版社, 2022: 7. |
China Electricity Council. China electric power statistical yearbook. 2022[M]. Beijing: China Statistics Press, 2022: 7 (in Chinese) | |
[37] | 丁仲礼. 深入理解碳中和的基本逻辑和技术需求[EB/OL]. 2022 [2023-10-01]. https://www.guancha.cn/dingzhongli/2022_09_11_657428_1.shtml. |
Ding Z L. In-depth understanding of the basic logic and technical requirements of carbon neutrality[EB/OL]. 2022 [2023-10-01]. https://www.guancha.cn/dingzhongli/2022_09_11_657428_1.shtml (in Chinese) |
[1] | TONG Rui-Yong, WEI Run-Bin, WU Jin-Yan, MAO Bao-Hua, TIAN Pei-Ning. Influence of power generation structure on carbon emission factor of high-speed railway in operation period [J]. Climate Change Research, 2025, 21(1): 116-124. |
[2] | WEI Xi-Kai, TAN Xiao-Shi, RUAN Jia-Tong, LIN Ming, QIN Lu, SUN Guo-Li, XIANG Ke-Qi, CHU Yao-Hui. Research on carbon emission factors of regional and provincial power grids from 2005 to 2021 [J]. Climate Change Research, 2024, 20(3): 337-350. |
[3] | LUO Xiao-Yu, CAO Xing-Yu, SONG Zhi-Qian. Comparison of carbon emissions throughout the entire lifecycle of buildings between China and Japan [J]. Climate Change Research, 2024, 20(2): 220-230. |
[4] | GE Qiu-Yu, XU Yi-Nuo, QIU Rong-Zu, HU Xi-Sheng, ZHANG Yuan-Yuan, LIU Na-Cui, ZHANG Lan-Yi. Scenario simulation of urban passenger transportation carbon reduction based on system dynamics [J]. Climate Change Research, 2023, 19(3): 357-370. |
[5] | YANG Shan-Shan, GUO Hao, YANG Xiu, LI Zheng. Consideration and prospect of total carbon emission control system under the double carbon target [J]. Climate Change Research, 2023, 19(2): 191-202. |
[6] | WANG Rui, ZHANG He, ZHANG Yun, HUANG Ya-Zhe. Allocation of carbon dioxide emission total targets in China province based on the dynamic improved equal proportion distribution [J]. Climate Change Research, 2023, 19(2): 238-248. |
[7] | LI Pin, XIE Xiao-Min, HUANG Zhen. The process of Germany energiewende and its enlightenment to China [J]. Climate Change Research, 2023, 19(1): 116-126. |
[8] | FAN Xing, LI Lu, QIN Yuan-Yuan, GAO Xiang. The pathway from carbon peak to carbon neutrality in major developed economies and its insights [J]. Climate Change Research, 2023, 19(1): 102-115. |
[9] | TAO Xue-Zong, WANG Qian-Yi, LI Han-Qing. Economical analysis of vessels’ shore power usage [J]. Climate Change Research, 2022, 18(4): 492-502. |
[10] | Ying HUANG,Hong-Xu GUO,Cui-Ping LIAO,Dai-Qing ZHAO. Study on low-carbon development path of urban transportation sector based on LEAP model—take Guangzhou as an example [J]. Climate Change Research, 2019, 15(6): 670-683. |
[11] | Jie-Ming CHOU, Ru-Feng DAI, Wen-Jie DONG, Jing-Han BAN, Chuan-Ye HU. Future CO2 emissions projection of China based on U.S. new climate policy [J]. Climate Change Research, 2018, 14(1): 95-105. |
[12] | Yi Si, Tan Jinkai, Li Mengya, Liang Xinxin, Wang Jun. Projection of Sea Level Rise and Its Impacts on Coastal Wetlands Within the Yangtze Estuary [J]. Climate Change Research, 2017, 13(6): 598-605. |
[13] | Su Shenshen, Zhao Jinyang, Hu Jianxin. Greenhouse Gas Emissions from Power Sector in China from 1990 to 2050 [J]. Climate Change Research, 2015, 11(5): 353-362. |
[14] | . Selection of CO2 Emission Scenarios in China During 2000-2050 [J]. Climate Change Research, 2010, 6(01): 53-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|