|
Climate Change Research ›› 2021, Vol. 17 ›› Issue (6): 730-743.doi: 10.12006/j.issn.1673-1719.2021.005
• Changes in Climate System • Previous Articles Next Articles
HU Yi-Yang1,2(), XU Ying2(
), LI Jin-Jian1, HAN Zhen-Yu2
Received:
2021-01-06
Revised:
2021-03-10
Online:
2021-11-30
Published:
2021-11-26
Contact:
XU Ying
E-mail:491706897@qq.com;xuying@cma.gov.cn
HU Yi-Yang, XU Ying, LI Jin-Jian, HAN Zhen-Yu. Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China[J]. Climate Change Research, 2021, 17(6): 730-743.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2021.005
Fig. 1 Observation (a) and low-resolution MME (b) and high-resolution MME (c) of mean annual precipitation, and the relative deviation (d, e) between simulated results and observation in 1961-2014 (The dots indicate that 78% or more of models agree on the sign of biases)
Fig. 2 The spatial distribution of model biases in mean annual precipitation in 1961-2014. (a) Low-resolution models, (b) high-resolution models (The number corresponds to Table 1)
Fig. 3 Box-and-whisker plots for multi-year average monthly precipitation distribution in China simulated by low-resolution models (purple) and high-resolution models (black) during 1961-2014 (The upper and lower boundaries of the box represent the 75% and 25% quantiles respectively)
Fig. 4 Taylor diagram for low-resolution models (a), high-resolution models (b) simulated seasonal and annual precipitation in China during 1961-2014 compared with the observation (The different colors represent the season, and the different numbers represent the model)
Fig. 5 Low-resolution models (b) and high-resolution models (c) simulated EOF1 of interannual variation of summer precipitation spatial distribution in eastern China during 1961-2014 and observation (a). (b0 and c0 are MME. Dot area in panels indicates that they are all statistically significant at the 95% confidence level. The green box indicates that the spatial positive correlation with observation is statistically significant at the 95% confidence level)
![]() |
Table 3 The spatial correlation coefficients of the first and second dominant mode of interdecadal variation by each mode model groups and observation
![]() |
[1] |
黄建平, 陈文, 温之平, 等. 新中国成立70年以来的中国大气科学研究: 气候与气候变化篇[J]. 中国科学: 地球科学, 2019 (10): 1607-1640. DOI: CNKI:SUN:JDXK.0.2019-10-007.
doi: CNKI:SUN:JDXK.0.2019-10-007 |
Huang J P, Chen W, Wen Z P, et al. Atmospheric science research in China since the founding of new China 70 years: climate and climate change[J]. Scientia Sinica: Terrae, 2019 (10): 1607-1640. DOI: CNKI:SUN:JDXK.0.2019-10-007 (in Chinese)
doi: CNKI:SUN:JDXK.0.2019-10-007 |
|
[2] |
Li D, Zou L W, Zhou T J. Extreme climate event changes in China in the 1.5 and 2℃ warmer climates: results from statistical and dynamical downscaling[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(18). DOI: 10.1029/2018JD028835
doi: 10.1029/2018JD028835 |
[3] |
许崇海, 沈新勇, 徐影. IPCC AR4模式对东亚地区气候模拟能力的分析[J]. 气候变化研究进展, 2007, 3(5): 287-292. DOI: 10.3969/j.issn.1673-1719.2007.05.008.
doi: 10.3969/j.issn.1673-1719.2007.05.008 |
Xu C H, Shen X Y, Xu Y. An analysis of climate change in East Asia by using the IPCC AR4 simulations[J]. Climate Change Research, 2007, 3(5): 287-292. DOI: 10.3969/j.issn.1673-1719.2007.05.008 (in Chinese)
doi: 10.3969/j.issn.1673-1719.2007.05.008 |
|
[4] |
陈晓晨. CMIP5全球气候模式对中国降水模拟能力的评估[D]. 北京: 中国气象科学研究院, 2014. DOI: CNKI:CDMD:2.1014.215199.
doi: CNKI:CDMD:2.1014.215199 |
Chen X C. Assessment of the precipitation over China simulated by CMIP5 multi-models[D]. Beijing: Chinese Academy of Meteorological Sciences, 2014. DOI: CNKI:CDMD:2.1014.215199 (in Chinese)
doi: CNKI:CDMD:2.1014.215199 |
|
[5] |
Shaffrey L C, Stevens I, Norton W, et al. UK HiGEM: the new UK high-resolution global environment model-model description and basic evaluation[J]. Journal of Climate, 2009, 22(8): 1861-1896. DOI: 10.1175/2008JCLI2508.1
doi: 10.1175/2008JCLI2508.1 URL |
[6] |
Bony S, Jean L D. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models[J]. Geophysical Research Letters, 2005, 32(20). DOI: 10.1029/2005GL023851
doi: 10.1029/2005GL023851 |
[7] |
王晓青, 刘健, 王志远. 过去2000年中国区域温度模拟与重建的对比分析[J]. 地球科学进展, 2015, 30(12): 1318-1327. DOI: 10.11867/j.issn.1001-8166.2015.12.1318.
doi: 10.11867/j.issn.1001-8166.2015.12.1318 |
Wang X Q, Liu J, Wang Z Y. Comparison of simulated and reconstructed temperature in China during the past 2000 years[J]. Advances in Earth Science, 2015, 30(12): 1318-1327. DOI: 10.11867/j.issn.1001-8166.2015.12.1318 (in Chinese)
doi: 10.11867/j.issn.1001-8166.2015.12.1318 |
|
[8] |
Doi T, Vecchi G A, Rosati A J, et al. Biases in the Atlantic ITCZ in seasonal-interannual variations for a coarse- and a high-resolution coupled climate model[J]. Journal of Climate, 2013, 25(16): 5494-5511. DOI: 10.1175/JCLI-D-11-00360.1
doi: 10.1175/JCLI-D-11-00360.1 URL |
[9] |
Demory M E, Vidale P L, Roberts M J, et al. The role of horizontal resolution in simulating drivers of the global hydrological cycle[J]. Climate Dynamics, 2013, 42(7-8): 2201-2225. DOI: 10.1007/s00382-013-1924-4
doi: 10.1007/s00382-013-1924-4 URL |
[10] |
Murakami H, Vecchi G A, Underwood S, et al. Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model[J]. Journal of Climate, 2015, 28(23): 9058-9079. DOI: 10.1175/JCLI-D-15-0216.1
doi: 10.1175/JCLI-D-15-0216.1 URL |
[11] |
Mahajan S, Evans K J, Branstetter M, et al. Fidelity of precipitation extremes in high resolution global climate simulations[J]. Procedia Computer Science, 2015, 51: 2178-2187. DOI: 10.1016/j.procs.2015.05.492
doi: 10.1016/j.procs.2015.05.492 URL |
[12] |
Rajendran K, Kitoh A, Srinivasan J, et al. Monsoon circulation interaction with Western Ghats orography under changing climate[J]. Theoretical & Applied Climatology, 2012, 110(4): 555-571. DOI: 10.1007/s00704-012-0690-2
doi: 10.1007/s00704-012-0690-2 |
[13] |
高学杰, 石英, Giorgi F. 中国区域气候变化的一个高分辨率数值模拟[J]. 中国科学: 地球科学, 2010, 40(7): 911-922. DOI: 10.3724/SP.J.1011.2010.01081.
doi: 10.3724/SP.J.1011.2010.01081 |
Gao X J, Shi Y, Giorgi F. A high-resolution numerical model simulation of regional climate change in China[J]. Scientia Sinica: Terrae, 2010, 40(7): 911-922. DOI: 10.3724/SP.J.1011.2010.01081 (in Chinese)
doi: 10.3724/SP.J.1011.2010.01081 |
|
[14] |
高学杰, 石英, 张冬峰, 等. RegCM3对21世纪中国区域气候变化的高分辨率模拟[J]. 科学通报, 2012, 57(5): 374-381. DOI: 10.1360/csb2012-57-5-374.
doi: 10.1360/csb2012-57-5-374 |
Gao X J, Shi Y, Zhang D F, et al. RegCM3 high resolution simulation of China’s regional climate change in the 21st century[J]. Chinese Science Bulletin, 2012, 57(5): 374-381. DOI: 10.1360/csb2012-57-5-374 (in Chinese)
doi: 10.1360/csb2012-57-5-374 |
|
[15] |
赵宗慈, 罗勇, 黄建斌. 回顾IPCC 30年(1998—2018)[J]. 气候变化研究进展, 2018, 14(5): 540-546. DOI: 10.12006/j.issn.1673-1719. 2018.062.
doi: 10.12006/j.issn.1673-1719. 2018.062 |
Zhao Z C, Luo Y, Huang J B. Review IPCC 30 years (1998-2018)[J]. Climate Change Research, 2018, 14(5): 540-546. DOI: 10.12006/j.issn.1673-1719.2018.062 (in Chinese)
doi: 10.12006/j.issn.1673-1719.2018.062 |
|
[16] |
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456. DOI: 10.12006/j.issn.1673-1719.2019.193.
doi: 10.12006/j.issn.1673-1719.2019.193 |
Zhou T J, Zou L W, Chen X L. Commentary on the Coupled Model Intercomparison Project phase 6[J]. Climate Change Research, 2019, 15(5): 445-456. DOI: 10.12006/j.issn.1673-1719.2019.193 (in Chinese)
doi: 10.12006/j.issn.1673-1719.2019.193 |
|
[17] |
王磊, 包庆, 何编. CMIP6高分辨率模式比较计划(HighResMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 498-502. DOI: 10.12006/j.issn.1673-1719.2019.077.
doi: 10.12006/j.issn.1673-1719.2019.077 |
Wang L, Bao Q, He B. Short commentary on CMIP6 High Resolution Model Intercomparison Project (HighResMIP)[J]. Climate Change Research, 2019, 15(5): 498-502. DOI: 10.12006/j.issn.1673-1719.2019.077 (in Chinese)
doi: 10.12006/j.issn.1673-1719.2019.077 |
|
[18] |
吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1102-1111. DOI: CNKI:SUN:DQWX.0.2013-04-008.
doi: CNKI:SUN:DQWX.0.2013-04-008 |
Wu J, Gao X J. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1102-1111. DOI: CNKI:SUN:DQWX.0.2013-04-008 (in Chinese)
doi: CNKI:SUN:DQWX.0.2013-04-008 |
|
[19] |
Xu Y, Gao X, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Sciences, 2009, 26(4): 763-772. DOI: 10.1007/s00376-009-9029-z
doi: 10.1007/s00376-009-9029-z URL |
[20] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research Atmospheres, 2001, 106(D7): 7183-7192
doi: 10.1029/2000JD900719 URL |
[21] |
吴佳, 周波涛, 徐影. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估[J]. 地球物理学报, 2015 (9): 32-44. DOI: 10.1029/2000JD900719.
doi: 10.1029/2000JD900719 |
Wu J, Zhou B T, Xu Y. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection[J]. Chinese Journal of Geophysics, 2015 (9): 32-44. DOI: 10.1029/2000JD900719 (in Chinese)
doi: 10.1029/2000JD900719 |
|
[22] |
高学杰, 徐影, 赵宗慈, 等. 数值模式不同分辨率和地形对东亚降水模拟影响的试验[J]. 大气科学, 2006 (2): 185-192. DOI: CNKI:SUN:DQXK.0.2006-02-000.
doi: CNKI:SUN:DQXK.0.2006-02-000 |
Gao X J, Xu Y, Zhao Z C, et al. Impacts of horizontal resolution and topography on the numerical simulation of East Asian precipitation[J]. Chinese Journal of Atmospheric Science, 2006 (2): 185-192. DOI: CNKI:SUN:DQXK.0.2006-02-000 (in Chinese)
doi: CNKI:SUN:DQXK.0.2006-02-000 |
|
[23] |
Feng L, Zhou Y J, Wu B, et al. Projection of future precipitation change over China with a high-resolution global atmospheric model[J]. Advances in Atmospheric Sciences, 2011, 28(2). DOI: 10.1007/s00376-010-0016-1
doi: 10.1007/s00376-010-0016-1 |
[24] |
陈晓晨, 徐影, 许崇海, 等. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014, 10(3): 217-225. DOI: 10.3969/j.issn.1673-1719.2014.03.011.
doi: 10.3969/j.issn.1673-1719.2014.03.011 |
Chen X C, Xu Y, Xu C H, et al. Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Climate Change Research, 2014, 10(3): 217-225. DOI: 10.3969/j.issn.1673-1719.2014.03.011 (in Chinese)
doi: 10.3969/j.issn.1673-1719.2014.03.011 |
|
[25] |
黄荣辉, 陈际龙, 黄刚, 等. 中国东部夏季降水的准两年周期振荡及其成因[J]. 大气科学, 2006 (4): 545-560. DOI: 10.1016/S1001-8042(06)60011-0.
doi: 10.1016/S1001-8042(06)60011-0 |
Huang R H, Chen J L, Huang G, et al. The quasi-biennial oscillation of summer monsoon rainfall in China and its cause[J]. Atmospheric Sciences, 2006 (4): 545-560. DOI: 10.1016/S1001-8042(06)60011-0 (in Chinese)
doi: 10.1016/S1001-8042(06)60011-0 |
|
[26] |
黄荣辉, 陈际龙, 刘永. 我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系[J]. 大气科学, 2011, 35(4): 589-606. DOI: CNKI:SUN:DQXK.0.2011-04-001.
doi: CNKI:SUN:DQXK.0.2011-04-001 |
Huang R H, Chen J L, Liu Y. Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia[J]. Atmospheric Sciences, 2011, 35(4): 589-606. DOI: CNKI:SUN:DQXK.0.2011-04-001 (in Chinese)
doi: CNKI:SUN:DQXK.0.2011-04-001 |
[1] | CHAI Qi-Min, LIU Bo-Han, MA Yu-Jie, XIE Rui-Li, LI Mo-Yu. Global Stocktake of energy transition and technological innovation: progress and assessment [J]. Climate Change Research, 2024, 20(6): 747-756. |
[2] | WU Yao, TANG Hong-Yu, WEI Lin-Xiao, HE Hui-Gen. Analysis of hourly precipitation variations in autumn in West China [J]. Climate Change Research, 2024, 20(5): 558-570. |
[3] | WANG Rong, DU Xiao-Zhong, CHAO Qing-Chen, ZHAO Shan-Shan, YE Dian-Xiu, LI Xiu-Cang, LI Ying, ZHANG Meng-Ran. Trends of precipitation and characteristics of wetness-dryness encountering in the water source and receiving areas of the west route of the South-to-North Water Transfer Project [J]. Climate Change Research, 2024, 20(5): 571-580. |
[4] | ZHOU Tian-Yi, JIANG Zhi-Hong, LI Wei, SUN Cen-Xiao. A comparative study of future summer precipitation projections in Northwest China under different physical constraint schemes [J]. Climate Change Research, 2024, 20(4): 403-415. |
[5] | WANG Min, YANG Ru-Pu, LI Li-Ping. Evaluation method and empirical study on synergistic reduction of pollution and carbon emissions at the urban level [J]. Climate Change Research, 2024, 20(2): 242-252. |
[6] | HU Jia-Yi, ZHAO Lin, WANG Chong, HU Guo-Jie, ZOU De-Fu, XING Zan-Pin, JIAO Meng-Di, QIAO Yong-Ping, LIU Guang-Yue, Du Er-Ji. Applicability evaluation and correction of CLDAS surface temperature products in permafrost region of Qinghai-Tibet Plateau [J]. Climate Change Research, 2024, 20(1): 10-25. |
[7] | WU Yan-Wen, YAN Hong-Ming, SHI Zheng-Tao, SHU Kang-Ning. Research on the response of heavy precipitation in Kunming to urbanization and thermal environment changes [J]. Climate Change Research, 2023, 19(6): 723-737. |
[8] | LUAN Lan, ZHAI Pan-Mao. Changes in rainy season precipitation properties over the Qinghai-Tibet Plateau based on multi-source datasets [J]. Climate Change Research, 2023, 19(2): 173-190. |
[9] | SUN Xiao-Ling, XIE Wen-Xin, ZHOU Bo-Tao. CMIP6 evaluation and projection of terrestrial ecosystem over Asia [J]. Climate Change Research, 2023, 19(1): 49-62. |
[10] | ZHAN Yun-Jian, CHEN Dong-Hui, LIAO Jie, JU Xiao-Hui, ZHAO Yu-Fei, REN Guo-Yu. Construction of a daily precipitation dataset of 60 city stations in China for the period 1901-2019 [J]. Climate Change Research, 2022, 18(6): 670-682. |
[11] | ZHANG Shi-Yan, HU Yong-Yun, LI Zhi-Bo. Recent changes and future projection of precipitation in Northwest China [J]. Climate Change Research, 2022, 18(6): 683-694. |
[12] | JIANG Han-Ying, GAO Xiang, WANG Can. Progress and evaluation of international climate change cooperation [J]. Climate Change Research, 2022, 18(5): 591-604. |
[13] | WU Yu-Peng, FAN An-Cheng, WU Ren-Hai, FENG Xiang-Zhao, WANG Yun-Qing, XIAO Qi-Mei, ZHONG Bao-Min, LUO Shu-Fen, DENG Jian-Yong, JIANG Song-Hua, ZHANG Zhi-Sheng, ZHANG Yi-Qiang. Evaluation of synergy in reducing pollution and carbon in the ceramic industry: based on the empirical analysis of dry milling [J]. Climate Change Research, 2022, 18(3): 373-380. |
[14] | MIAO Wen-Fei, LIU Shi-Yin, ZHU Yu, DUAN Shi-Mei, HAN Feng-Ze. Spatio-temporal differentiation and altitude dependence of temperature and precipitation in Meili Snow Mountains [J]. Climate Change Research, 2022, 18(3): 328-342. |
[15] | HAN Zhen-Yu, XU Ying, WU Jia, SHI Ying. Evaluation on the simulated runoff in China and future change projection based on multiple regional climate models [J]. Climate Change Research, 2022, 18(3): 305-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|