|
Climate Change Research ›› 2023, Vol. 19 ›› Issue (6): 723-737.doi: 10.12006/j.issn.1673-1719.2023.126
• Changes in Climate System • Previous Articles Next Articles
WU Yan-Wen1(), YAN Hong-Ming2, SHI Zheng-Tao1(
), SHU Kang-Ning3
Received:
2023-06-07
Revised:
2023-07-23
Online:
2023-11-30
Published:
2023-12-01
WU Yan-Wen, YAN Hong-Ming, SHI Zheng-Tao, SHU Kang-Ning. Research on the response of heavy precipitation in Kunming to urbanization and thermal environment changes[J]. Climate Change Research, 2023, 19(6): 723-737.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2023.126
Fig. 2 Spatial distribution of annual total precipitation frequency (PF, a), total precipitation amount (PA, b), heavy precipitation frequency (HPF, c), and heavy precipitation amount (HPA, d) in 1991-2021 in Kunming
Fig. 4 The change trend of heavy precipitation amount (HPA, a) and heavy precipitation frequency (HPF, b) at urban and suburban station during the wet season from 1991 to 2021
Fig. 5 Changes of precipitation over the years at Kunming station in wet season from 1991 to 2021. (a) Total precipitation amount (PA) and contribution rate of heavy precipitation amount (HPAC), (b) total precipitation frequency (PF) and contribution rate of heavy precipitation frequency (HPFC)
Fig. 6 The daily variation of heavy precipitation at Kunming station in the wet season from 1991 to 2021. (a) Heavy precipitation amount (HPA) and the contribution rate of heavy precipitation amount (HPAC), (b) heavy precipitation frequency (HPF) and the contribution rate of heavy precipitation frequency (HPFC)
Fig. 7 Diurnal variations curve of heavy precipitation frequency (HPF) in different urbanization stages of Kunming station and Jinning station during the wet season in 1991-2021
Fig. 8 Comparison of diurnal (a, c) and nighttime (b, d) changes of heavy rainfall in Kunming during the wet season from 1991 to 2021 between urban (c, d) and suburban (a, b) station
![]() |
Table 2 Statistical table of monthly average temperature and LST in wet season from 2005 to 2021 at Kunming station and from 2011 to 2021 at Chenggong station
![]() |
Fig. 10 Average land surface temperature (LST) variation curve (a) and urban-heat-island ratio index (URI) variation curve (b) in day and night during the wet season of 2005-2021
[1] |
朱秀迪, 张强, 孙鹏. 北京市快速城市化对短时间尺度降水时空特征影响及成因[J]. 地理学报, 2018, 73 (11): 2086-2104.
doi: 10.11821/dlxb201811004 |
Zhu X D, Zhang Q, Sun P. Effects of urbanization on spatio-temporal distribution of precipitations in Beijing and its related causes[J]. Acta Geographica Sinica, 2018, 73 (11): 2086-2104 (in Chinese)
doi: 10.11821/dlxb201811004 |
|
[2] | 黄国如, 陈易偲, 姚芝军. 高度城镇化背景下珠三角地区极端降雨时空演变特征[J]. 水科学进展, 2021, 32 (2): 161-170. |
Huang G R, Chen Y S, Yao Z J. Spatial and temporal evolution characteristics of extreme rainfall in the Pearl River Delta under high urbanization[J]. Advances in Water Science, 2021, 32 (2): 161-170 (in Chinese) | |
[3] |
Subbiah S, Vishwanath V, Kaveri Devi S. Urban climate in Tamil Nadu, India: a statistical analysis of increasing urbanization and changing trends of temperature and rainfall[J]. Energy and Buildings, 1991, 15 (1-2): 231-243
doi: 10.1016/0378-7788(90)90135-6 URL |
[4] | 何玉秀, 许有鹏, 李子贻, 等. 城镇化对极端降水的影响及其贡献率研究:以太湖平原地区为例[J]. 湖泊科学, 2022, 34 (1): 262-271. |
He Y X, Xu Y P, Li Z Y, et al. The impacts and its contribution rate of urbanization on extreme precipitation, 1976-2015: a case study in the Lake Taihu Plain region[J]. Journal of Lake Sciences, 2022, 34 (1): 262-271 (in Chinese)
doi: 10.18307/2022.0121 URL |
|
[5] | IPCC. Climate change 2022: mitigation of climate change[M]. Cambridge: Cambridge University Press, 2022 |
[6] |
Balling R C, Brazel S W. Recent changes in Phoenix, Arizona summertime diurnal precipitation patterns[J]. Theoretical and Applied Climatology, 1987, 38 (1): 50-54
doi: 10.1007/BF00866253 URL |
[7] |
Chen S, Li W B, Du Y D, et al. Urbanization effect on precipitation over the Pearl River Delta based on CMORPH data[J]. Advances in Climate Change Research, 2015, 6 (1): 16-22
doi: 10.1016/j.accre.2015.08.002 URL |
[8] | Tapiador F J, Kacimi S, de Castro M, et al. Precipitation science: observations, retrievals, and modeling[J]. Advances in Meteorology, 2015 ( 2015). DOI: 10.1155/2015/843403 |
[9] |
Wang J, Feng J M, Yan Z W. Impact of extensive urbanization on summertime rainfall in the Beijing region and the role of local precipitation recycling[J]. Journal of Geophysical Research: Atmospheres, 2018, 123 (7): 3323-3340
doi: 10.1002/jgrd.v123.7 URL |
[10] |
Dai A, Zhao T B, Chen J. Climate change and drought: a precipitation and evaporation perspective[J]. Current Climate Change Reports, 2018, 4 (3): 301-312
doi: 10.1007/s40641-018-0101-6 |
[11] |
Freitag B M, Nair U S, Niyogi D. Urban modification of convection and rainfall in complex terrain[J]. Geophysical Research Letters, 2018, 45 (5): 2507-2515
doi: 10.1002/grl.v45.5 URL |
[12] |
Niyogi D, Osuri K K, Busireddy N K R, et al. Timing of rainfall occurrence altered by urban sprawl[J]. Urban Climate, 2020, 33: 100643
doi: 10.1016/j.uclim.2020.100643 URL |
[13] | 陈炯, 郑永光, 张小玲, 等. 中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析[J]. 气象学报, 2013, 71 (3): 367-382. |
Chen J, Zheng Y G, Zhang X L, et al. Analysis of the climatological distribution and diurnal variations of the short-duration heavy rain and its relation with diurnal variations of the MCSs over China during the warm season[J]. Acta Meteorologica Sinica, 2013, 71 (3): 367-382 (in Chinese) | |
[14] | 王夫常, 宇如聪, 陈昊明, 等. 我国西南部降水日变化特征分析[J]. 暴雨灾害, 2011, 30 (2): 117-121. |
Wang F C, Yu R C, Chen H M, et al. The characteristics of rainfall diurnal variation over the Southwestern China[J]. Torrential Rain and Disasters, 2011, 30 (2): 117-121 (in Chinese) | |
[15] | 杨晓静, 徐宗学, 左德鹏, 等. 云南省1958—2013年极端降水时空变化特征分析[J]. 灾害学, 2015, 30 (4): 178-186. |
Yang X J, Xu Z X, Zuo D P, et al. Spatio-temporal characteristics of extreme precipitation in Yunnan province from 1958-2013[J]. Journal of Catastrophology, 2015, 30 (4): 178-186 (in Chinese) | |
[16] | 于晓丽, 马显莹, 顾世祥, 等. 滇中高原区降水量50年的时空变化[J]. 长江流域资源与环境, 2013, 22 (1): S96-S102. |
Yu X L, Ma X Y, Gu S X, et al. Spatial and temporal changes of precipitation in Central Yunnan plateau for the last half century[J]. Resources and Environment in the Yangtze Basin, 2013, 22 (1): S96-S102 (in Chinese) | |
[17] | 王辉, 吴文俊, 王广, 等. 昆明市极端降水事件演变特征及城市效应[J]. 水资源保护, 2021, 37 (4): 61-68. |
Wang H, Wu W J, Wang G, et al. Evolution characteristics of extreme precipitation events and its urban effect in Kunming city[J]. Water Resources Protection, 2021, 37 (4): 61-68 (in Chinese) | |
[18] | 姜勇, 黄初龙. 2019年盛夏昆明一次夜间致灾性强降水的成因分析[J]. 甘肃科学学报, 2020, 32 (4): 69-77, 96. |
Jiang Y, Huang C L. Analysis of the causes of a disaster-inducing heavy precipitation at night in Kunming in the midsummer of 2019[J]. Journal of Gansu Sciences, 2020, 32 (4): 69-77, 96 (in Chinese) | |
[19] | Gong P, Li X C, Wang J, et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018[J]. Remote Sensing of Environment, 2020 (236): 111510 |
[20] | 宋晓猛, 张建云, 刘九夫, 等. 北京地区降水结构时空演变特征[J]. 水利学报, 2015, 46 (5): 525-535. |
Song X M, Zhang J Y, Liu J F, et al. Spatio-temporal variation characteristics of precipitation extremes in Beijing[J]. Journal of Hydraulic Engineering, 2015, 46 (5): 525-535 (in Chinese) | |
[21] |
Ren G, Zhou Y. Urbanization effect on trends of extreme temperature indices of national stations over Mainland China, 1961-2008 [J]. Journal of Climate, 2014, 27 (6): 2340-2360
doi: 10.1175/JCLI-D-13-00393.1 URL |
[22] |
Wan Z M. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[J]. Remote Sensing of Environment, 2014, 140: 36-45
doi: 10.1016/j.rse.2013.08.027 URL |
[23] | 李超男, 徐雁南. 2013—2021年南京热环境时空演化及扩张驱动机制研究[J/OL]. 2023 [2023-06-02]. http://kns.cnki.net/kcms/detail/34.1298.O4.20230206.1339.001.html. |
Li C N, Xu Y N. Study on the spatio-temporal evolution and expansion driving mechanism of Nanjing thermal environment from 2013 to 2021[J/OL]. 2023 [2023-06-02]. http://kns.cnki.net/kcms/detail/34.1298.O4.20230206.1339.001.html (in Chinese) | |
[24] | 潘莹, 崔林林, 刘昌脉, 等. 基于MODIS数据的重庆市城市热岛效应时空分析[J]. 生态学杂志, 2018, 37 (12): 3736-3745. |
Pan Y, Cui L L, Liu C M, et al. Spatiotemporal distribution of urban heat island effect based on MODIS data in Chongqing, China[J]. Chinese Journal of Ecology, 2018, 37 (12): 3736-3745 (in Chinese) | |
[25] |
乔治, 黄宁钰, 徐新良, 等. 2003—2017年北京市地表热力景观时空分异特征及演变规律[J]. 地理学报, 2019, 74 (3): 475-489.
doi: 10.11821/dlxb201903006 |
Qiao Z, Huang N Y, Xu X L, et al, Spatio-temporal pattern and evolution of the urban thermal landscape in metropolitan Beijing between 2003 and 2017[J]. Acta Geographica Sinica, 2019, 74 (3): 475-489 (in Chinese)
doi: 10.11821/dlxb201903006 |
|
[26] |
Lu L, Weng Q, Guo H, et al. Assessment of urban environmental change using multi-source remote sensing time series (2000-2016): a comparative analysis in selected megacities in Eurasia[J]. Science of the Total Environment, 2019, 684: 567-577
doi: 10.1016/j.scitotenv.2019.05.344 URL |
[27] |
Grigoraș G, Urițescu B. Spatial hotspot analysis of Bucharest’s Urban Heat Island (UHI) using MODIS data[J]. Annals of Valahia University of Targoviste, Geographical Series, 2018, 18 (1): 14-22
doi: 10.2478/avutgs-2018-0002 URL |
[28] |
Schlünzen H K, Hoffmann P, Rosenhagen G, et al. Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg[J]. International Journal of Climatology, 2010, 30 (8): 1121-1136
doi: 10.1002/joc.v30:8 URL |
[29] | Wan H C, Zhong Z, Yang X Q, et al. Impact of city belt in Yangtze River Delta in China on a precipitation process in summer: a case study[J]. Atmospheric Research, 2013, 125-126: 63-75 |
[30] |
Huong H T L, Pathirana A. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam[J]. Hydrology and Earth System Sciences, 2013, 17 (1): 379-394
doi: 10.5194/hess-17-379-2013 URL |
[31] | Pettitt A N. A non-parametric approach to the change-point problem[J]. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1979, 28 (2): 126-135 |
[32] |
Chang C C, Li Y, Chen Y H, et al. Advanced statistical analyses of urbanization impacts on heavy rainfall in the Beijing metropolitan area[J]. Urban Climate, 2021, 40: 100987
doi: 10.1016/j.uclim.2021.100987 URL |
[33] | 晏红明, 程建刚, 郑建萌, 等. 2009 年云南秋季特大干旱的气候成因分析[J]. 大气科学学报, 2012, 35 (2): 229-239. |
Yan H M, Cheng J G, Zheng J M, et al. The climate cause of heavy drought in Yunnan in autumn 2009[J]. Transactions of Atmospheric Sciences, 2012, 35 (2): 229-239 (in Chinese) | |
[34] | 金燕, 况雪源, 晏红明, 等. 近55年来云南区域性干旱事件的分布特征和变化趋势研究[J]. 气象, 2018, 44 (9): 1169-1178. |
Jin Y, Kuang X Y, Yan H M, et al. Studies on distribution characteristics and variation trend of the regional drought events over Yunnan in recent 55 years[J]. Meteorological Monthly, 2018, 44 (9): 1169-1178 (in Chinese) | |
[35] | 汪靖, 张少波, 袁利平. 西南地区极端降水变化特征分析[J]. 气象科技进展, 2021, 11 (6): 31-37. |
Wang J, Zhang S B, Yuan L P. Analysis on the characteristics of extreme precipitation in Southwestern China[J]. Advances in Meteorological Science and Technology, 2021, 11 (6): 31-37 (in Chinese) | |
[36] |
Zheng Z F, Xu G R, Gao H. Characteristics of summer hourly extreme precipitation events and its local environmental influencing factors in Beijing under urbanization background[J]. Atmosphere, 2021, 12 (5): 632
doi: 10.3390/atmos12050632 URL |
[37] | 崔凤娇, 邵锋, 齐锋, 等. 植被对城市热岛效应影响的研究进展[J]. 浙江农林大学学报, 2020, 37 (1): 171-181. |
Cui F J, Shao F, Qi F, et al. Research advances in the influence of vegetation on urban heat island effect[J]. Journal of Zhejiang A & F University, 2020, 37 (1): 171-181 (in Chinese) | |
[38] | 李华宏, 王曼, 闵颖, 等. 昆明市雨季短时强降水特征分析及预报研究[J]. 云南大学学报 (自然科学版), 2019, 41 (3): 518-525. |
Li H H, Wang M, Min Y, et al. The analysis and forecast of short-time heavy rainfall in rainy season in Kunming[J]. Journal of Yunnan University (Natural Sciences Edition), 2019, 41 (3): 518-525 (in Chinese) | |
[39] | 杨芳园, 甄廷忠, 邹灵宇, 等. 昆明市主城区一次局地短时强降水特征研究[J]. 沙漠与绿洲气象, 2021, 15 (1): 28-35. |
Yang F Y, Zhen T Z, Zou L Y, et al. A study of the local short-time heavy rain in the main urban area of Kunming[J]. Desert and Oasis Meteorology, 2021, 15 (1): 28-35 (in Chinese) | |
[40] |
Wang X Q, Gong Y B. The impact of an urban dry island on the summer heat wave and sultry weather in Beijing city[J]. Chinese Science Bulletin, 2010, 55 (16): 1657-1661
doi: 10.1007/s11434-010-3088-5 URL |
[41] | Cao C, Lee X, Liu S, et al. Urban heat islands in China enhanced by haze pollution[J]. Nature Communications, 2016, 7 (1): 12509 www.climatechange.cn |
[1] | LI Yu, LI Ya-Qin, ZHAO Ju-Shuang. A comparative study of atmospheric and surface urban heat island effects in China’s major cities [J]. Climate Change Research, 2023, 19(5): 605-615. |
[2] | GAO Yun-Xiang, LI Ke-Ke, ZHANG Wen-Ting, WANG Tian-Wei, LI Shan. Spatio-temporal evolution and projection of urban heat island in China under the shared socioeconomic pathways [J]. Climate Change Research, 2023, 19(4): 431-445. |
[3] | HE Jia-Jun, REN Guo-Yu, ZHANG Pan-Feng. Effects of data homogenization on the estimates of temperature trend and urbanization bias: taking Beijing area as an example [J]. Climate Change Research, 2021, 17(5): 503-513. |
[4] | CHEN Yan, HUI Pin-Hong, ZHOU Xue-Dong, YANG Jie. Influence of climate change on the volume capture ratio of annual rainfall’s partition [J]. Climate Change Research, 2021, 17(5): 525-536. |
[5] | FANG Jia-Yi, YIN Jie, SHI Xian-Wu, FANG Jian, DU Shi-Qiang, LIU Min. A review of compound flood hazard research in coastal areas [J]. Climate Change Research, 2021, 17(3): 317-328. |
[6] | ZHANG Mi, MA Hong-Yun, LIN Hui-Jiao, LI Hai-Jun, WANG Ying. Mitigation effect of different cool roof schemes on thermal environment of urban agglomeration [J]. Climate Change Research, 2021, 17(1): 45-57. |
[7] | YUAN Yuan, SUN Xin-Tong. Exploring the relationship between urbanization, industrial structure, energy consumption, economic growth and CO2 emissions: an empirical study based on the heterogeneity of inter-provincial income levels in China [J]. Climate Change Research, 2020, 16(6): 738-747. |
[8] | WANG Jiao-Yue, XI Feng-Ming, HOU Wei, BING Long-Fei, YIN Yan, XU Ting-Ting, WANG Jia-Feng, MA Ming-Jing. Variations of carbon, nitrogen and phosphorus in wetland water along the urban-rural gradients in Shenyang [J]. Climate Change Research, 2020, 16(4): 453-465. |
[9] | Jun-Ling LIU, Ke WANG, Qin-Rui XIAHOU, Fang-Ming LIU, Ji ZOU, Ying KONG. Study on China’s long-term low carbon transition pathway under the urbanization process [J]. Climate Change Research, 2020, 16(3): 355-366. |
[10] | CAO Ying,ZHENG Xiao-Qi,LIU Qiang. The correlation analysis between urbanization mode and low carbon development—taking Shijiazhuang as an example [J]. Climate Change Research, 2020, 16(2): 223-231. |
[11] | Xiao-Jiang DING,Fang-Lei ZHONG,Jin-Huang MAO,Xiao-Yu SONG,Chun-Lin HUANG. Provincial urbanization projected to 2050 under the shared socioeconomic pathways in China [J]. Climate Change Research, 2018, 14(4): 392-401. |
[12] | Tao BIAN, Guo-Yu REN, Li-Xia ZHANG. Significant urbanization effect on decline of near-surface wind speed at Shijiazhuang station [J]. Climate Change Research, 2018, 14(1): 21-30. |
[13] | Jin Kai, Wang Fei, Gou Jiaojiao. Urbanization Effects on the Observed Temperature of Two Meteorological Stations in Changsha City [J]. Climate Change Research, 2017, 13(5): 456-464. |
[14] | Wu Rong, Sun Yi, Yang Yuanjian, Xie Wusan, Tao Yin, Zhang Hao, Shi Tao. Effects of Urbanization on Extreme Temperature Events in Anhui Province [J]. Climate Change Research, 2016, 12(6): 527-537. |
[15] | Tao Yin, Huang Yong, Yang Yuanjian, Wang Kai, Cheng Xiangyang, Wang Mingguang, Wu Rong. Impact of Urbanization on Wind Speed in Anhui Province [J]. Climate Change Research, 2016, 12(6): 519-526. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|