|
|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (1): 107-117.doi: 10.12006/j.issn.1673-1719.2023.188
• Greenhouse Gas Emissions • Previous Articles Next Articles
TAO Yu-Chen1,2, FU Kai-Dao1,2(
), ZHANG Jie1,2, YANG Li-Sha1,2, YUAN Xi1,2
Received:2023-08-30
Revised:2023-10-08
Online:2024-01-30
Published:2024-01-02
TAO Yu-Chen, FU Kai-Dao, ZHANG Jie, YANG Li-Sha, YUAN Xi. Study on CO2 and CH4 emission fluxes from Lancang River cascade reservoirs[J]. Climate Change Research, 2024, 20(1): 107-117.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2023.188
Fig. 5 Assessment results of annual GHG emission fluxes of reservoirs from pre-reservoir impoundment (a) and unrelated anthropogenic (b) sources in Lancang River in 2001-2021
| [1] |
Fearnside P M. Hydroelectric dams in the Brazilian Amazon as sources of ‘greenhouse’ gases[J]. Environmental Conservation, 1995, 22 (1): 7-19
doi: 10.1017/S0376892900034020 URL |
| [2] | John W M R, Reed H, Kelly C A, et al. Are hydroelectric reservoirs significant sources of greenhouse gases?[J]. Ambio, 1993, 22 (4): 246-248 |
| [3] |
Dos Santos M A, Rosa L P, Sikar B, et al. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants[J]. Energy Policy, 2006, 34 (4): 481-488
doi: 10.1016/j.enpol.2004.06.015 URL |
| [4] |
Barros N, Cole J J, Tranvik L J, et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude[J]. Nature Geoscience, 2011, 4 (9): 593-596
doi: 10.1038/ngeo1211 |
| [5] | Teodoru C R, Bastien J, Bonneville M C, et al. The net carbon footprint of a newly created boreal hydroelectric reservoir[J]. Global Biogeochemical Cycles, 2012, 26: GB2016 |
| [6] | 孙志禹, 陈永柏, 李翀, 等. 中国水库温室气体研究(2009—2019): 回顾与展望[J]. 水利学报, 2020, 51 (3): 253-267. |
| Sun Z Y, Chen Y B, Li C, et al. Research of reservoir greenhouse gas emission in China (2009-2019): review and outlook[J]. Journal of Hydraulic Engineering, 2020, 51 (3): 253-267 (in Chinese) | |
| [7] | IPCC. IPCC special report on renewable energy sources and climate change mitigation[M]. Cambridge: Cambridge University Press, 2012 |
| [8] |
Lima I C. Biogeochemical distinction of methane releases from two Amazon hydroreservoirs[J]. Chemosphere, 2005, 59 (11): 1697-1702
pmid: 15894055 |
| [9] |
Zhao J, Zhang M, Xiao W, et al. An evaluation of the flux-gradient and the eddy covariance method to measure CH4, CO2, and H2O fluxes from small ponds[J]. Agricultural and Forest Meteorology, 2019, 275: 255-264
doi: 10.1016/j.agrformet.2019.05.032 URL |
| [10] | Bastviken D, Cole J, Pace M, et al. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate[J]. Global Biogeochemical Cycles, 2004, 18 (4): GB4009 |
| [11] |
Hansen C, Pilla R, Matson P, et al. Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates[J]. Environmental Research Communications, 2022, 4 (12): 121008
doi: 10.1088/2515-7620/acae24 |
| [12] |
Levasseur A, Mercier-Blais S, Prairie Y T, et al. Improving the accuracy of electricity carbon footprint: estimation of hydroelectric reservoir greenhouse gas emissions[J]. Renewable and Sustainable Energy Reviews, 2021, 136: 110433
doi: 10.1016/j.rser.2020.110433 URL |
| [13] | 张斌, 李哲, 李翀, 等. 水库温室气体净通量评估模型(G-res Tool)及在长江上游典型水库初步应用[J]. 湖泊科学, 2019, 31 (5): 1479-1488. |
|
Zhang B, Li Z, Li C, et al. The net GHG flux assessment model of reservoir (G-res Tool) and its application in reservoirs in upper reaches of Yangtze River in China[J]. Journal of Lake Sciences, 2019, 31 (5): 1479-1488 (in Chinese)
doi: 10.18307/2019.0510 URL |
|
| [14] | 李雨晨, 秦宇, 杨柳, 等. 长江上游大中型水库碳排放量估算与分析: 以IPCC国家温室气体清单指南为基础[J]. 湖泊科学, 2023, 35 (1): 131-145. |
| Li Y C, Qin Y, Yang L, et al. Estimation and analysis of carbon emission from the large-and medium-sized reservoirs in the upper reaches of Changjiang River: on the basis of the IPCC national greenhouse gas inventory[J]. Journal of Lake Sciences, 2023, 35 (1): 131-145 (in Chinese) | |
| [15] | Prairie Y T, Alm J, Harby A, et al. The GHG reservoir tool (G-res) technical documentation[M]. Joint publication of the UNESCO Chair in Global Environmental Change and the International Hydropower Association, 2022 |
| [16] | United Nations Educational, Scientific and Cultural Organization (UNESCO), International Hydropower Association (IHA). The UNESCOLHA measurement specification guidance for evaluating the GHG status of man-made freshwater reservoirs[R]. London: International Hydropower Association, 2009 |
| [17] |
Yvon-Durocher G, Allen A P, Bastviken D, et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales[J]. Nature, 2014, 507 (7493): 488-491
doi: 10.1038/nature13164 |
| [18] | 刘丛强, 汪福顺, 王雨春, 等. 河流筑坝拦截的水环境响应: 来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18 (4): 384-396. |
| Liu C Q, Wang F S, Wang Y C, et al. Responses of aquatic environment to river damming: from the geochemical view[J]. Resources and Environment in the Yangtze Basin, 2009, 18 (4): 384-396 (in Chinese) | |
| [19] | 张翎, 王远见, 夏星辉. 水库建成与运行对温室气体排放的影响[J]. 环境科学学报, 2022, 42 (1): 298-307. |
| Zhang L, Wang Y J, Xia X H. Influence of reservoir construction and operation on greenhouse gas emission[J]. Acta Scientiae Circumstantiae, 2022, 42 (1): 298-307 (in Chinese) | |
| [20] |
Xiao Q T, Xu X F, Duan H T, et al. Eutrophic Lake Taihu as a significant CO2source during 2000-2015[J]. Water Research, 2020, 170: 115331.
doi: 10.1016/j.watres.2019.115331 URL |
| [21] | 赵小杰, 赵同谦, 郑华, 等. 水库温室气体排放及其影响因素[J]. 环境科学, 2008 (8): 2377-2384. |
| Zhao X J, Zhao T Q, Zheng H, et al. Greenhouse gas emission from reservoir and its influence factors[J]. Environmental Science, 2008 (8): 2377-2384 (in Chinese) | |
| [22] | Harrison J A, Prairie Y T, Mercier-Blais S, et al. Year-2020 global distribution and pathways of reservoir methane and carbon dioxide emissions according to the greenhouse gas from reservoirs (G-res) model[J]. Global Biogeochemical Cycles, 2021, 35 (6): e2020GB006888 |
| [23] | Abril G, Guérin F, Richard S, et al. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana)[J]. Global Biogeochemical Cycles, 2005, 19 (4): GB4007 |
| [24] |
Soued C, Prairie Y T. The carbon footprint of a Malaysian tropical reservoir: measured versus modeled estimates highlight the underestimated key role of downstream processes[J]. Biogeosciences, 2019, 17 (2): 515-527
doi: 10.5194/bg-17-515-2020 URL |
| [25] |
Shi W, Maavara T, Chen Q, et al. Spatial patterns of diffusive greenhouse gas emissions from cascade hydropower reservoirs[J]. Journal of Hydrology, 2023, 619: 129343
doi: 10.1016/j.jhydrol.2023.129343 URL |
| [26] | 杜琪琪, 李伯根, 蔡虹明, 等. 澜沧江梯级水库水化学特征及其对水-气界面CO2通量的影响[J]. 地球与环境, 2023, 51 (1): 36-46. |
| Du Q Q, Li B G, Cai H M, et al. Hydrochemical characteristics of cascade reservoirs water along the Lancangjiang River and the relative influence on CO2 flux at water/air interface[J]. Earth and Environment, 2023, 51 (1): 36-46 (in Chinese) | |
| [27] |
Wagner D, Pfeiffer E M. Two temperature optima of methane production in a typical soil of the Elbe River marshland[J]. FEMS Microbiology Ecology, 1997, 22 (2): 145-153
doi: 10.1111/j.1574-6941.1997.tb00366.x URL |
| [28] |
Raymond P A, Zappa C J, Butman D, et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers[J]. Limnology and Oceanography: Fluids and Environments, 2012, 2 (1): 41-53
doi: 10.1215/lof3.v2.1 URL |
| [29] |
Borges A V, Delilie B, Schiettecatte L S, et al. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames)[J]. Limnology and Oceanography, 2004, 49 (5): 1630-1641
doi: 10.4319/lo.2004.49.5.1630 URL |
| [30] | 夏欣, 钟权. 水电站生命周期温室气体排放研究综述[J]. 中国农业水利水电, 2020 (11): 188-192, 198. |
| Xia X, Zhong Q. Research overview of life cycle greenhouse gas emissions from hydropower plants[J]. China Rural Water and Hydropower, 2020 (11): 188-192, 198 (in Chinese) | |
| [31] | Maavara T, Chen Q, van Meter K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment, 2020, 1 (2): 103-116 |
| [32] |
Deemer B R, Harrison J A, Li S, et al. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis[J]. Bioscience, 2016, 66 (11): 949-964
doi: 10.1093/biosci/biw117 pmid: 32801383 |
| [33] |
Li S Y, Bush R T, Santos I R, et al. Large greenhouse gases emissions from China’s lakes and reservoirs[J]. Water Research, 2018, 147: 13-24
doi: 10.1016/j.watres.2018.09.053 URL |
| [34] |
Li S, Wang F, Luo W, et al. Carbon dioxide emissions from the Three Gorges Reservoir, China[J]. Acta Geochimica, 2017, 36 (4): 645-657
doi: 10.1007/s11631-017-0154-6 URL |
| [35] | 赵登忠, 谭德宝, 汪朝辉, 等. 水布垭水库水气界面二氧化碳交换规律研究[J]. 人民长江, 2012, 43 (8): 65-70. |
| Zhao D Z, Tan D B, Wang Z H, et al. Research on exchange law of CO2 at water-air interface of Shuibuya Reservoir[J]. Yangtze River, 2012, 43 (8): 65-70 (in Chinese) | |
| [36] | 陈敏, 许浩霆, 郑祥旺, 等. 夏季降雨事件对水库温室气体通量变化的影响: 来自湖北官庄水库的高频观测[J]. 湖泊科学, 2021, 33 (6): 1857-1870. |
|
Chen M, Xu H T, Zheng X W, et al. Impacts of summer rainfall events on the dynamics of greenhouse gas fluxes revealed by high-frequency observation from Guanzhuang Reservoir, Hubei province[J]. Journal of Lake Sciences, 2021, 33 (6): 1857-1870 (in Chinese)
doi: 10.18307/2021.0619 URL |
|
| [37] |
Wang X F, He Y X, Yuan X Z, et al. Greenhouse gases concentrations and fluxes from subtropical small reservoirs in relation with watershed urbanization[J]. Atmospheric Environment, 2017, 154: 225-235
doi: 10.1016/j.atmosenv.2017.01.047 URL |
| [38] | Duchemin E, Lucotte M, Canuel R, et al. Comparison of greenhouse gas emissions from an old tropical reservoir with those from other reservoirs worldwide[J]. International Association of Theoretical and Applied Limnology, Proceedings, 2001, 27: 1391-1395 |
| [39] |
Dos Santos M A, Rosa L P, Sikar B, et al. Gross greenhouse gas fluxes from hydropower reservoir com-pared to thermo-power plants[J]. Energy Policy, 2006, 34: 481-488
doi: 10.1016/j.enpol.2004.06.015 URL |
| [40] |
St Louis V L, Kelly C A, Duchemin E, et al. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate[J]. Bioscience, 2000, 50 (9): 766-775
doi: 10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2 URL |
| [41] |
Gunkel G. Hydropower: a green energy? Tropical reservoirs and greenhouse gas emissions[J]. Clean: Soil, Air, Water, 2009, 37 (9): 726-734
doi: 10.1002/clen.v37:9 URL |
| [42] |
Knoll L B, Vanni M J, Renwick W H, et al. Temperate reservoirs are large carbon sinks and small CO2 sources: results from high-resolution carbon budgets[J]. Global Biogeochemical Cycles, 2013, 27 (1): 52-64
doi: 10.1002/gbc.v27.1 URL |
| [43] | 刘胜强, 毛显强, 邢有凯. 中国新能源发电生命周期温室气体减排潜力比较和分析[J]. 气候变化研究进展, 2012, 8 (1): 48-53. |
| Liu S Q, Mao X Q, Xing Y K. Estimation and comparison of greenhouse gas mitigation potential of new energy by life circle assessment in China[J]. Climate Change Research, 2012, 8 (1): 48-53 (in Chinese) | |
| [44] | 杜海龙, 李哲, 郭劲松. 基于ISO14067的长江上游某水电项目碳足迹分析[J]. 长江流域资源与环境, 2017, 26 (7): 1102-1110. |
| Du H L, Li Z, Guo J S. Carbon footprint of a large hydropower project in the upstream of the Yangtze: following ISO14067[J]. Resources and Environment in the Yangtze Basin, 2017, 26 (7): 1102-1110 (in Chinese) |
| [1] | CHEN Deliang, TAN Xian-Chun, PENG Zhe, YAN Hong-Shuo, CHENG Yong-Long. Opportunities and challenges of artificial intelligence in climate research and services [J]. Climate Change Research, 2024, 20(6): 669-681. |
| [2] | QIN Yu-Xiang, HUANG Rui. Carbon emission efficiency and influencing factors in Central and Eastern European countries based on Super-SBM model [J]. Climate Change Research, 2024, 20(5): 581-592. |
| [3] | WANG Qian, GUO Fu. Research on the impact of climate risk on product prices in futures market [J]. Climate Change Research, 2024, 20(4): 428-439. |
| [4] | TIAN Li-Jun, XU Sen-Yu. Study on the decarbonization path of Chinese civil aviation based on a system dynamic model [J]. Climate Change Research, 2024, 20(4): 454-464. |
| [5] | ZHANG Jing-Yu, CAO Long. Simulated response of the ocean and land carbon cycles to positive and negative CO2 emissions [J]. Climate Change Research, 2024, 20(4): 416-427. |
| [6] | CHENG Yang, HAN Zhen-Yu. Projection of the cluster high temperature events in China and population exposure under 1.5℃ and 2℃ global warming [J]. Climate Change Research, 2024, 20(3): 278-290. |
| [7] | WANG Jiao-Jiao, ZHANG Hu, JIN Xiao-Ying, HUANG Shuai, WANG Hong-Wei, WANG Wen-Hui, ZHAN Tao, ZHOU Gang-Yi, CHE Fu-Qiang, LI Yan, LI Xin-Yu, HE Rui-Xia, ZHANG Ze, ZHANG Sheng-Rong, LI Guo-Yu, TONG Chang-Jiang, WANG Xun, JIN Hui-Jun. Influences of gravel refilling on temperature fields of runway foundation soils in permafrost regions under a warming climate: a case study of the Mohe airport, northern Heilongjiang province, Northeast China [J]. Climate Change Research, 2024, 20(3): 291-303. |
| [8] | LIU Yuan-Xin, HE Shuo, JIANG Ya-Jing, LUO Xu, YUAN Jia-Hai. Spatial-temporal decomposition of carbon emissions in China’s four major urban agglomerations [J]. Climate Change Research, 2024, 20(2): 231-241. |
| [9] | DONG Li-Li, ZHANG Han, LI Qing-Quan, WANG Fang, ZHAO Chong-Bo, XIE Bing. Comparative study on regional temperature simulation in China by different resolution CWRF models [J]. Climate Change Research, 2024, 20(2): 129-145. |
| [10] | ZHAO Peng, JIANG Tong, SU Bu-Da, GAO Miao-Ni. Research on the future change trend of global runoff into the sea based on SSA-BP neural network model [J]. Climate Change Research, 2024, 20(2): 182-192. |
| [11] | CAO Xiang, JIANG Lu, YU Yang. Carbon emission effect of foreign investment and its influence on carbon peaking [J]. Climate Change Research, 2024, 20(2): 205-219. |
| [12] | HU Jian-Bo, MAI Jun-Nan. Research on the trend prediction and structure transfer of embodied carbon in China’s export trade [J]. Climate Change Research, 2024, 20(1): 62-74. |
| [13] | WU Zhi-Xia, ZHENG Xia-Zhong, CHEN Yi-Jun, HUANG Shan, HU Wen-Li, DUAN Chen-Fei. Flood loss estimation by integrating social media sentiment and multi-source data under climate change background [J]. Climate Change Research, 2024, 20(1): 26-36. |
| [14] | DONG Hong-Jie, DONG Wen-Jie, CAO Ying-Chun, ZHANG Yi-Fan. Inundation risk assessment of historical relics in Henan province under rainstorm scenarios based on SCS-CN model [J]. Climate Change Research, 2023, 19(6): 738-748. |
| [15] | DING Li-Yuan, WANG Yan-Hua, WANG Ke. The synergistic effect of carbon emission trading on pollution and carbon reduction and the influence mechanism [J]. Climate Change Research, 2023, 19(6): 786-798. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|