|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (2): 231-241.doi: 10.12006/j.issn.1673-1719.2023.148
• Greenhouse Gas Emissions • Previous Articles Next Articles
LIU Yuan-Xin1, HE Shuo1, JIANG Ya-Jing1, LUO Xu1, YUAN Jia-Hai1,2()
Received:
2023-07-07
Revised:
2023-10-17
Online:
2024-03-30
Published:
2024-01-08
LIU Yuan-Xin, HE Shuo, JIANG Ya-Jing, LUO Xu, YUAN Jia-Hai. Spatial-temporal decomposition of carbon emissions in China’s four major urban agglomerations[J]. Climate Change Research, 2024, 20(2): 231-241.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2023.148
[1] | 冯宗宪, 高赢. 中国区域碳排放驱动因素、减排贡献及潜力探究[J]. 北京理工大学学报(社会科学版), 2019, 21 (4): 13-20. |
Feng Z X, Gao Y. Study on China’s regional driving factors of carbon emission, emission reduction contribution and potential[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2019, 21 (4): 13-20 (in Chinese) | |
[2] |
Guan D B, Hubacek K, Weber C L, et al. The drivers of Chinese CO2emissions from 1980 to 2030[J]. Global Environmental Change, 2008, 18 (4): 626-634
doi: 10.1016/j.gloenvcha.2008.08.001 URL |
[3] |
Ye B, Jiang J J, Li C S, et al. Quantification and driving force analysis of provincial-level carbon emissions in China[J]. Applied Energy, 2017, 198: 223-238
doi: 10.1016/j.apenergy.2017.04.063 URL |
[4] | 王勇, 许子易, 张亚新. 中国超大城市碳排放达峰的影响因素及组合情景预测: 基于门限-STIRPAT模型的研究[J]. 环境科学学报, 2019, 39 (12): 4284-4292. |
Wang Y, Xu Z Y, Zhang Y X. Influencing factors and combined scenario prediction of carbon emission peaks in megacities in China: based on Threshold-STIRPAT model[J]. Acta Scientiae Circumstantiae, 39 (12): 4284-4292 (in Chinese) | |
[5] | 落基山研究所. 中国城市群碳排放达峰之路: 机遇与探索[R]. 北京, 2019. |
Rocky Mountain Institute. Carbon emission peaking path of China’s city clusters: exploring the opportunities[R]. Beijing, 2019 (in Chinese) | |
[6] | 廖明球, 许雷鸣. 二氧化碳排放的IO-SDA模型及其实证研究[J]. 统计研究, 2017, 34 (7): 62-70. |
Liao M Q, Xu L M. IO-SDA model of CO2 emissions and its empirical research[J]. Statistical Research, 2017, 34 (7): 62-70 (in Chinese) | |
[7] | 马峥, 崔豫泓. 基于SDA模型的中国碳排放驱动因素分解研究[J]. 煤炭经济研究, 2020, 40 (7): 32-36. |
Ma Z, Cui Y H. Research on decomposition of driving factors of China’s carbon emission based on SDA model[J]. Coal Economic Research, 2020, 40 (7): 32-36 (in Chinese) | |
[8] | 胡雷. 我国城镇化对二氧化碳排放的影响机理研究[J]. 气候变化研究进展, 2016, 12 (4): 341-347. |
Hu L. Research on the mechanism of how urbanization effect on carbon emissions in China[J]. Climate Change Research, 2016, 12 (4): 341-347 (in Chinese) | |
[9] | 曹俊文, 姜雯昱. 基于LMDI的电力行业碳排放影响因素分解研究[J]. 统计与决策, 2018, 34 (14): 128-131. |
Cao J W, Jiang W Y. Research on decomposition of influencing factors of power industry carbon emission based on LMDI[J]. Statistics & Decision, 2018, 34 (14): 128-131 (in Chinese) | |
[10] | 王敏, 冯相昭, 安祺, 等. 基于脱钩指数和LMDI的青海省绿色低碳发展策略研究[J]. 气候变化研究进展, 2021, 17 (5): 598-607. |
Wang M, Feng X Z, An Q, et al. Study on green and low-carbon development in Qinghai province based on decoupling index and LMDI[J]. Climate Change Research, 2021, 17 (5): 598-607 (in Chinese) | |
[11] |
Ang B W. Decomposition analysis for policymaking in energy: which is the preferred method?[J]. Energy Policy, 2004, 32: 1131-1139
doi: 10.1016/S0301-4215(03)00076-4 URL |
[12] |
Ma C. A multi-fuel, multi-sector and multi-region approach to index decomposition: an application to China’s energy consumption 1995-2010[J]. Energy Economics, 2014, 42: 9-16
doi: 10.1016/j.eneco.2013.11.009 URL |
[13] | 马晓明, 包金梅, 熊思琴. 基于LMDI分解的中国多区域碳排放驱动因素分析[J]. 现代管理科学, 2017 (8): 63-65. |
Ma X M, Bao J M, Xiong S Q. Analysis of driving factors of multi-regional carbon emissions in China based on LMDI decomposition[J]. Modern Management Science, 2017 (8): 63-65 (in Chinese) | |
[14] | 刘小丽, 王永利. 基于LMDI分解的中国制造业碳排放驱动因素分析[J]. 统计与决策, 2022, 38 (12): 60-63. |
Liu X L, Wang Y L. Based on LMDI decomposition of China’s manufacturing carbon driving factors analysis[J]. Journal of Statistics and Decision, 2022, 38 (12): 60-63 (in Chinese) | |
[15] | 陈锋, 张晶, 任娇, 等. 基于LMDI模型的黄河流域碳排放时空差异及影响因素研究[J]. 地球环境学报, 2022, 13 (4): 418-427. |
Chen F, Zhang J, Ren J, et al. Spatial and temporal differences and influencing factors of carbon emissions in the Yellow River basin based on LMDI model[J]. Journal of Earth Environment, 2022, 13 (4): 418-427 (in Chinese) | |
[16] |
Ang B W, Zhang F Q. Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique[J]. Energy, 1999, 24 (4): 297-305
doi: 10.1016/S0360-5442(98)00092-9 URL |
[17] |
Ang B W, Xu X Y, Su B. Multi-country comparisons of energy performance: the index decomposition analysis approach[J]. Energy Economics, 2015, 47: 68-76
doi: 10.1016/j.eneco.2014.10.011 URL |
[18] |
Ang B W, Su B, Wang H. A spatial-temporal decomposition approach to performance assessment in energy and emissions[J]. Energy Economics, 2016, 60: 112-121
doi: 10.1016/j.eneco.2016.08.024 URL |
[19] |
Song C, Zhao T, Wang J. Spatial-temporal analysis of China’s regional carbon intensity based on ST-IDA from 2000 to 2015[J]. Journal of Cleaner Production, 2019, 238: 117874
doi: 10.1016/j.jclepro.2019.117874 URL |
[20] |
Ang B W, Su B. Carbon emission intensity in electricity production: a global analysis[J]. Energy Policy, 2016, 94: 56-63
doi: 10.1016/j.enpol.2016.03.038 URL |
[21] |
Ang B W, Goh T. Carbon intensity of electricity in ASEAN: drivers, performance and outlook[J]. Energy Policy, 2016, 98: 170-179
doi: 10.1016/j.enpol.2016.08.027 URL |
[22] |
Wang J F, He S T, Qiu Y, et al. Investigating driving forces of aggregate carbon intensity of electricity generation in China[J]. Energy Policy, 2018, 113: 249-257
doi: 10.1016/j.enpol.2017.11.009 URL |
[23] |
Xu X Y, Ang B W. Multilevel index decomposition analysis: approaches and application[J]. Energy Economics, 2014, 44: 375-382
doi: 10.1016/j.eneco.2014.05.002 URL |
[24] |
Ang B W, Choi K H. Decomposition of aggregate energy and gas emission intensities for industry: a refined divisia index method[J]. Energy Journal, 1997, 18 (3): 59-73
doi: 10.5547/ISSN0195-6574-EJ-Vol18-No3-3 URL |
[25] | 张黎. 基于LMDI的中国能源消费的影响因素分解分析[J]. 中国能源, 2013, 35 (10): 21-24. |
Zhang L. Decomposition analysis of influencing factors of energy consumption in China based on LMDI[J]. Energy of China, 2013, 35 (10): 21-24 (in Chinese) | |
[26] |
顾阿伦, 何崇恺, 吕志强. 基于LMDI方法分析中国产业结构变动对碳排放的影响[J]. 资源科学, 2016, 38 (10): 1861-1870.
doi: 10.18402/resci.2016.10.04 |
Gu A L, He C K, Lv Z Q. Industrial structure changes impacts on carbon emissions in China based on LMDI method[J]. Resources Science, 2016, 38 (10): 1861-1870 (in Chinese)
doi: 10.18402/resci.2016.10.04 |
|
[27] |
Ang B W. LMDI decomposition approach: a guide for implementation[J]. Energy Policy, 2015, 86: 233-238
doi: 10.1016/j.enpol.2015.07.007 URL |
[28] | Zhang M, Ang B W. A survey of index decomposition analysis in energy and environmental studies[J]. Energy, 2017, 44 (1): 590-597 |
[29] | Ang B W, Zhang F Q. Survey of decomposition analysis in energy studies[J]. Energy, 2018, 54 (1): 10-18 |
[30] | Fotheringham A S, Brunsdon C, Charlton M. Quantitative geography: perspectives on spatial data analysis[M]. London: SAGE Publications, 2000 |
[31] | Martin D. Area, scale and weighting in census data analysis[J]. Journal of Geographical Systems, 2003, 5 (2): 157-174 |
[32] | Charlton M, Fotheringham S, Brunsdon C. Geographically weighted regression: the analysis of spatially varying relationships[J]. Geographical Analysis, 2003. DOI: 10.1111/j.1538-4632.2003.tb01114.x |
[33] | 周春山. 发挥人口集聚效应建设现代化的城市群和都市圈[J]. 国家治理, 2021 (31): 19-24. |
Zhou C S. Use population agglomeration effect to build modern city agglomeration and metropolitan area[J]. Governance, 2021 (31): 19-24 (in Chinese) | |
[34] |
Li H, Zhao Y H, Qiao X Y, et al. Identifying the driving forces of national and regional CO2 emissions in China: based on temporal and spatial decomposition analysis models[J]. Energy Economics, 2017, 68: 522-538
doi: 10.1016/j.eneco.2017.10.024 URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|