| [1] |
IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021: 1211-1362
|
| [2] |
方佳毅, 史培军. 全球气候变化背景下海岸洪水灾害风险评估研究进展与展望[J]. 地理科学进展, 2019, 38 (5): 625-636.
doi: 10.18306/dlkxjz.2019.05.001
|
|
Fang J Y, Shi P J. A review of coastal flood risk research under global climate change[J]. Progress in Geography, 2019, 38 (5): 625-636 (in Chinese)
doi: 10.18306/dlkxjz.2019.05.001
|
| [3] |
方佳毅, 殷杰, 石先武, 等. 沿海地区复合洪水危险性研究进展[J]. 气候变化研究进展, 2021, 17 (3): 317-328.
|
|
Fang J Y, Yin J, Shi X W, et al. A review of compound flood hazard research in coastal areas[J]. Climate Change Research, 2021, 17 (3): 317-328 (in Chinese)
|
| [4] |
李思达, 方佳毅, 周巍, 等. 高潮位洪水的致灾机制、风险评估与预报评述[J]. 地理科学进展, 2024, 43 (1): 190-202.
doi: 10.18306/dlkxjz.2024.01.014
|
|
Li S D, Fang J Y, Zhou W, et al. High tide flooding: drivers, risk assessment, and prediction[J]. Progress in Geography, 2024, 43 (1): 190-202 (in Chinese)
doi: 10.18306/dlkxjz.2024.01.014
|
| [5] |
Dutton A, Carlson A E, Long A J, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science, 2015, 349 (6244): aaa4019
|
| [6] |
Oppenheimer M, Glavovic B C, Hinkel J, et al. Sea level rise and implications for low-lying islands, coasts and communities. IPCC special report on the ocean and cryosphere in a changing climate[M]. Cambridge: Cambridge University Press, 2019: 321-445
|
| [7] |
张通, 俞永强, 效存德, 等. IPCC AR6解读: 全球和区域海平面变化的监测和预估[J]. 气候变化研究进展, 2022, 18 (1): 12-18.
|
|
Zhang T, Yu Y Q, Xiao C D, et al. Interpretation of IPCC AR6 report: monitoring and projections of global and regional sea level change[J]. Climate Change Research, 2022, 18 (1): 12-18 (in Chinese)
|
| [8] |
Garbe J, Albrecht T, Levermann A, et al. The hysteresis of the Antarctic ice sheet[J]. Nature, 2020, 585 (7826): 538-544
|
| [9] |
IPCC. The ocean and cryosphere in a changing climate: a special report of Working Groups I and II of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2019
|
| [10] |
Jeltsch-Thömmes A, Stocker T F, Joos F. Hysteresis of the Earth system under positive and negative CO2 emissions[J]. Environmental Research Letters, 2020, 15 (12): 124026
|
| [11] |
Williams C R, Thodoroff P, Arthern R J, et al. Calculations of extreme sea level rise scenarios are strongly dependent on ice sheet model resolution[J]. Communications Earth & Environment, 2025, 6 (1): 60
|
| [12] |
Shepherd A, Ivins E, Rignot E, et al. Mass balance of the Antarctic ice sheet from 1992 to 2017[J]. Nature, 2018, 558 (7709): 219-222
|
| [13] |
潘家华, 张莹. 中国应对气候变化的战略进程与角色转型:从防范“黑天鹅”灾害到迎战“灰犀牛”风险[J]. 中国人口∙资源与环境, 2018, 28 (10): 1-8.
|
|
Pan J H, Zhang Y. Evolution and transformation of China’s climate change strategy: from preventing ‘Black Swan’ disasters to reducing ‘Gray Rhino’ risks[J]. China Population, Resources and Environment, 2018, 28 (10): 1-8 (in Chinese)
|
| [14] |
Flage R, Aven T. Emerging risk: conceptual definition and a relation to Black Swan type of events[J]. Reliability Engineering & System Safety, 2015, 144: 61-67
|
| [15] |
温家洪, 袁穗萍, 李大力, 等. 海平面上升及其风险管理[J]. 地球科学进展, 2018, 33 (4): 350-360.
doi: 10.11867/j.issn.1001-8166.2018.04.0350
|
|
Wen J H, Yuan S P, Li D L, et al. Sea level rise and its risk management[J]. Advances in Earth Science, 2018, 33 (4): 350-360 (in Chinese)
doi: 10.11867/j.issn.1001-8166.2018.04.0350
|
| [16] |
Scherer R P, Aldahan A, Tulaczyk S, et al. Pleistocene collapse of the west Antarctic ice sheet[J]. Science, 1998, 281 (5373): 82-85
pmid: 9651249
|
| [17] |
Dutton A, DeConto R M. Genetic insight on ice sheet history[J]. Science, 2023, 382 (6677): 1356-1357
doi: 10.1126/science.adm6957
pmid: 38127738
|
| [18] |
Kopp R E, Shwom R L, Wagner G, et al. Tipping elements and climate-economic shocks: pathways toward integrated assessment[J]. Earth’s Future, 2016, 4 (8): 346-372
|
| [19] |
Lenton T M, Rockstrom J, Gaffney O, et al. Climate tipping points: too risky to bet against[J]. Nature, 2019, 575 (7784): 592-595
|
| [20] |
Mitrovica J X, Tamisiea M E, Davis J L, et al. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change[J]. Nature, 2001, 409 (6823): 1026-1029
|
| [21] |
Vousdoukas M I, Bouziotas D, Giardino A, et al. Understanding epistemic uncertainty in large-scale coastal flood risk assessment for present and future climates[J]. Natural Hazards and Earth System Sciences, 2018, 18 (8): 2127-2142
|
| [22] |
Gesch D B. Best practices for elevation-based assessments of sea-level rise and coastal flooding exposure[J]. Frontiers in Earth Science, 2018, 6: 230
|
| [23] |
Muis S, Verlaan M, Nicholls R J, et al. A comparison of two global datasets of extreme sea levels and resulting flood exposure[J]. Earth’s Future, 2017, 5: 379-392
|
| [24] |
Muis S, Apecechea M I, Dullaart J, et al. A high-resolution global dataset of extreme sea levels, tides, and storm surges, including future projections[J]. Frontiers in Marine Science, 2020, 7: 263
|
| [25] |
Fang J, Lincke D, Brown S, et al. Coastal flood risks in China through the 21st century: an application of DIVA[J]. Science of the Total Environment, 2020, 704: 135311
|
| [26] |
Vousdoukas M I, Voukouvalas E, Mentaschi L, et al. Developments in large-scale coastal flood hazard mapping[J]. Natural Hazards and Earth System Sciences, 2016, 16 (8): 1841-1853
|
| [27] |
Jin H, Yuan J, Kulp S, et al. Substantial reduction in population exposure to sea level changes along the Chinese mainland coast through emission mitigation[J]. Environmental Research Letters, 2024, 19 (11): 114044
|
| [28] |
Wu S, Feng A, Gao J, et al. Shortening the recurrence periods of extreme water levels under future sea-level rise[J]. Stochastic Environmental Research and Risk Assessment, 2017, 31 (10): 2573-2584
|
| [29] |
Fang J, Wahl T, Zhang Q, et al. Extreme sea levels along coastal China: uncertainties and implications[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35: 405-418
|
| [30] |
詹雅婷, 朱叶飞, 王玉军, 等. 江苏沿海地面沉降的高分辨率时序InSAR监测与分析[J]. 测绘科学, 2022, 47 (7): 69-76.
|
|
Zhan Y T, Zhu Y F, Wang Y J, et al. Land subsidence monitoring of Jiangsu coastal areas with high resolution time series InSAR[J]. Science of Surveying and Mapping, 2022, 47 (7): 69-76 (in Chinese)
|
| [31] |
范雪婷, 潘九宝. 连云港防波堤时序InSAR沉降监测研究[J]. 地理空间信息, 2021, 19 (10): 55-59, 150.
|
|
Fan X T, Pan J B. Subsidence monitoring of Lianyungang breakwater based on time series InSAR[J]. Geospatial Information, 2021, 19 (10): 55-59, 150 (in Chinese)
|
| [32] |
郑楷源, 高超, 郑铣鑫, 等. 中国沿海地区相对海平面上升研究进展[J]. 宁波大学学报 (理工版), 2022, 35 (2): 113-120.
|
|
Zheng K Y, Gao C, Zheng X X, et al. Research progresses in relative sea-level rise in China’s coastal regions[J]. Journal of Ningbo University (NESS), 2022, 35 (2): 113-120 (in Chinese)
|
| [33] |
Nicholls R J, Lincke D, Hinkel J, et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure[J]. Nature Climate Change, 2021, 11 (4): 338-342
|
| [34] |
Tay C, Lindsey E O, Chin S T, et al. Sea-level rise from land subsidence in major coastal cities[J]. Nature Sustainability, 2022, 5 (12): 1049-1057
|
| [35] |
Ohenhen L O, Shirzaei M, Ojha C, et al. Disappearing cities on US coasts[J]. Nature, 2024, 627 (8002): 108-115
|
| [36] |
Fang J, Nicholls R J, Brown S, et al. Benefits of subsidence control for coastal flooding in China[J]. Nature Communications, 2022, 13 (1): 6946
doi: 10.1038/s41467-022-34525-w
pmid: 36376281
|
| [37] |
蔡榕硕, 刘克修, 谭红建. 气候变化对中国海洋和海岸带的影响、风险与适应对策[J]. 中国人口∙资源与环境, 2020, 30 (9): 1-8.
|
|
Cai R S, Liu K X, Tan H J. Impacts and risks of climate change on China’s coastal zones and seas and related adaptation[J]. China Population, Resources and Environment, 2020, 30 (9): 1-8 (in Chinese)
|
| [38] |
田展, 吴文娴, 刘俊国, 等. 深度不确定性下沿海洪水气候变化适应决策方法述评[J]. 科学通报, 2022, 67 (22): 2638-2650.
|
|
Tian Z, Wu W X, Liu J G, et al. A review of decision-making methods for climate change adaptation under deep uncertainty: with a focus on flooding control in coastal cities[J]. Chinese Science Bulletin, 2022, 67 (22): 2638-2650 (in Chinese)
|
| [39] |
Hinkel J, Feyen L, Hemer M, et al. Uncertainty and bias in global to regional scale assessments of current and future coastal flood risk[J]. Earth’s Future, 2021, 9 (7): e2020EF001882
|
| [40] |
Adhikari S, Ivins E R, Larour E. ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change[J]. Geoscientific Model Development, 2016, 9 (3): 1087-1109
|