气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (2): 162-174.doi: 10.12006/j.issn.1673-1719.2020.029
收稿日期:
2020-02-21
修回日期:
2020-08-23
出版日期:
2021-03-30
发布日期:
2021-04-02
通讯作者:
王黎娟
作者简介:
汤秭晨,女,硕士研究生
基金资助:
TANG Zi-Chen1,2, LI Qing-Quan1,2, WANG Li-Juan1(), WU Li-Quan3
Received:
2020-02-21
Revised:
2020-08-23
Online:
2021-03-30
Published:
2021-04-02
Contact:
WANG Li-Juan
摘要:
利用参加第六次国际耦合模式比较计划(CMIP6)年代际气候预测计划(DCPP)的加拿大CanESM5模式和日本MIROC6模式的结果,评估了模式对中国近地面气温的预测能力。在年代际尺度上,两个模式年代际试验对近地面气温的回报技巧均高于历史试验的模拟能力,采用海温初始化可以提高模式对中国近地面气温的年代际预报技巧。对年代际回报试验的进一步分析表明,两个模式均能较好地预测年平均气温的变化;对季节平均气温,模式在秋季的回报技巧最高,在冬季较低。就区域平均气温而言,两个模式对中国各个地区年平均和季节平均气温都有较高的回报技巧,其中我国南方和西部地区的气温回报技巧比北方高。年平均以及春季、冬季的气温年代际回报技巧总体随提前时间的增加而降低,夏季和秋季的气温回报技巧随提前时间的增加提高。各区域内年代际预测技巧随提前时间的变化特征与全国整体基本一致。
汤秭晨, 李清泉, 王黎娟, 伍丽泉. CMIP6年代际试验对中国气温预测能力的初步评估[J]. 气候变化研究进展, 2021, 17(2): 162-174.
TANG Zi-Chen, LI Qing-Quan, WANG Li-Juan, WU Li-Quan. Preliminary assessment on CMIP6 decadal prediction ability of air temperature over China[J]. Climate Change Research, 2021, 17(2): 162-174.
图2 观测、CanESM5模式历史试验模拟以及MIROC6模式年代际试验提前1~5年回报的1961—2010年平均的年平均及四季平均气温
Fig. 2 1961-2010 averaged temperatures of observation (a, d, g, j, m), CanESM5’s historical simulation (b, e, h, k, n) and MIROC6’s decadal hindcasts (c, f, i, l, o) at lead years 1-5 (a-c) annual, (d-f) spring, (g-i) summer, (j-l) autumn, (m-o) winter
表1 1961—2010年平均的CanESM5与MIROC6模式历史试验模拟和年代际试验提前1~5年回报的年及季节平均气温与观测的空间相关系数
Tab.1 Average (1961-2010) pattern correlation coefficient (PCC) of annual and seasonal mean temperatures between model results (decadal and historical experiments of CanESM5 and MIROC6 models) and observations at lead years of 1-5
图3 CanESM5模式历史试验与年代际试验提前5~9年的年平均及四季平均回报气温与观测的ACC 注:黑点表示通过0.1的显著性水平。
Fig. 3 Anomaly correlation coefficient (ACC) of annual and seasonal mean temperature between observation and CanESM5 historical experiment (a-e) and decadal reforecast (f-j) at lead years 5-9 (Spotted area denotes passing significant test at 0.1 level) (a, f) annual, (b, g) spring, (c, h) summer, (d, i) autumn, (e, j) winter
图4 MIROC6模式历史试验与年代际回报试验提前5~9年的年平均及四季平均回报气温与观测的RMSE
Fig. 4 Root mean square error (RMSE) of annual and seasonal mean temperature between observation and MIROC6 historical experiment (a-e) and decadal reforecast (f-j) at lead years 5-9 (a, f) annual, (b, g) spring, (c, h) summer, (d, i) autumn, (e, j) winter
图5 CanESM5模式提前(a) 1~5,(b) 2~6,(c) 3~7,(d) 4~8,(e) 5~9,(f) 6~10年回报的年平均气温与观测的ACC 注:黑点表示通过0.01的显著性水平。
Fig. 5 ACC between annual mean temperature of observation and that of CanESM5 reforecast at lead years (a) 1-5, (b) 2-6, (c) 3-7,(d) 4-8, (e) 5-9, (f) 6-10 (Spotted area denotes passing significant test at 0.01 confident level)
图6 两个模式平均春(a)、夏(b)、秋(c)、冬(d)季提前1~5年回报气温的RMSE
Fig. 6 RMSE of seasonal mean temperature of two model’s average reforecast at lead year 1-5 (a) spring, (b) summer, (c) autumn, (d) winter
图7 两个模式平均的年平均及季节平均不同区域平均气温回报与观测的ACC 注:点划线表示ACC通过0.1的显著性检验。
Fig. 7 ACC between observation temperature and average temperature of two models’ reforecasts in various regions of China (Black chain lines represent thresholds at 0.1 significance level) (a) annual, (b) spring, (c) summer, (d) autumn, (e) winter
[1] | Alexander L V, Uotila P, Nicholls N. Influence of sea surface temperature variability on global temperature and precipitation extremes[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D18116 |
[2] | Wu Z W, Jiang Z H, Li J P, et al. Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency[J]. Climate Dynamics, 2012, 39(9-10):2393-2402 |
[3] | Zhou Y F, Wu Z W. Possible impacts of mega-El Niño/Southern Oscillation and Atlantic Multidecadal Oscillation on Eurasian heatwave frequency variability[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(697):1647-1661 |
[4] | Chen W, Dong B W. Anthropogenic impacts on recent decadal change in temperature extremes over China: relative roles of greenhouse gases and anthropogenic aerosols[J]. Climate Dynamics, 2019, 52(5-6):3643-3660 |
[5] | Chen H P, Sun J Q, Fan K. Decadal features of heavy rainfall events in eastern China[J]. Acta Meteorologica Sinica, 2012, 26(3):289-303 |
[6] | Hanlon H M, Hegerl G C, Tett S F B, et al. Can a decadal forecasting system predict temperature extreme indices?[J]. Journal of Climate, 2013, 26(11):3728-3744 |
[7] | Liu Y L, Donat M G, Rust H W, et al. Decadal predictability of temperature and precipitation means and extremes in a perfect-model experiment[J]. Climate Dynamics, 2019, 54(7-8):3711-3729 |
[8] | Meehl G A, Goddard L, Murphy J, et al. Decadal prediction: can it be skillful?[J]. Bulletin of the American Meteorological Society, 2009, 90(10):1467-1485 |
[9] | Meehl G A, Goddard L, Boer G, et al. Decadal climate prediction: an update from the trenches[J]. Bulletin of the American Meteorological Society, 2014, 95(2):243-267 |
[10] | Palmer T N, Doblas-Reyes F J, Weisheimer A, et al. Toward seamless prediction: calibration of climate change projections using seasonal forecasts[J]. Bulletin of the American Meteorological Society, 2008, 89(4):459-470 |
[11] | Hurrell J, Meehl G A, Bader D, et al. A unified modeling approach to climate system prediction[J]. Bulletin of the American Meteorological Society, 2009, 90(20):1819-1832 |
[12] | Vera C, Barange M, Dube O, et al. Needs assessment for climate information on decadal timescales and longer[J]. Procedia Environmental Sciences, 2010, 1: 275-286 |
[13] | Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4):485-498 |
[14] | Veronika E, Sandrine B, Gerald A M, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development Discussions, 2015, 8(12):10539-10583 |
[15] | Boer G J, Smith D M, Cassou C, et al. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6[J]. Geoscientific Model Development, 2016, 9(10):3751-3777 |
[16] | 周天军, 吴波. 年代际气候预测问题: 科学前言与挑战[J]. 地球科学进展, 2017, 32(4):331-341. |
Zhou T J, Wu B. Decadal climate prediction: scientific frontier and challenge[J]. Advances in Earth Science, 2017, 32(4):331-341 (in Chinese) | |
[17] | 吴波, 辛晓歌. CMIP6年代际气候预测计划(DCPP)概况与评述[J]. 气候变化研究进展, 2019, 15(5):476-480. |
Wu B, Xin X G. Short commentary on CMIP6 Decadal Climate Prediction Project (DCPP)[J]. Climate Change Research, 2019, 15(5):476-480 (in Chinese) | |
[18] | Marotzke J, Müller W A, Vamborg F S E, et al. MiKlip: a national research project on decadal climate prediction[J]. Bulletin of the American Meteorological Society, 2016, 97(12):2379-2394 |
[19] | Xin X G, Gao F, Wei M, et al. Decadal prediction skill of BCC-CSM1.1 climate model in East Asia[J]. International Journal of Climatology, 2018, 38(2):584-592 |
[20] | Xin X G, Wei M, Li Q Q, et al. Decadal prediction skill of BCC-CSM1.1 with different initialization strategies[J]. Journal of the Meteorological Society of Japan, 2019, 97(3):1-12 |
[21] | Wei M, Li Q Q, Xin X G, et al. Improved decadal climate prediction in the North Atlantic using EnOI-assimilated initial condition[J]. Science Bulletin, 2017, 62(16):1142-1147 |
[22] | Kushnir Y, Scaife A A, Arritt R, et al. Towards operational predictions of the near-term climate[J]. Nature Climate Change, 2019, 9(2):94-101 |
[23] | 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4):396-408. |
Han Z Y, Wu B, Xin X G. Decadal prediction skill of the global sea surface temperature in the BCC_CSM1.1 climate model[J]. Advances in Earth Science, 2017, 32(4):396-408 (in Chinese) | |
[24] | 容新尧, 刘征宇, 段晚锁, 等. 耦合模式中北太平洋和北大西洋海表面温度年代际可预报性和预报技巧的季节依赖性[J]. 地球科学进展, 2017, 32(4):382-395. |
Rong X Y, Liu Z Y, Duan W S, et al. Seasonal dependence of the North Pacific and North Atlantic SST predictability and forecast skill[J]. Advances in Earth Science, 2017, 32(4):382-395 (in Chinese) | |
[25] | Cassou C, Kushnir Y, Hawkins E, et al. Decadal climate variability and predictability: challenges and opportunities[J]. Bulletin of the American Meteorological Society, 2018, 99(3):479-490 |
[26] | 高峰, 辛晓歌, 吴统文, 等. BCC_CSM1.1对10年尺度全球及区域温度的预测研究[J]. 大气科学, 2012, 36(6):1165-1179. |
Gao F, Xin X G, Wu T W, et al. A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1.1 model[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(6):1165-1179 (in Chinese) | |
[27] |
Doblas-Reyes F J, Andreu-Burillo I, Chikamoto Y, et al. Initialized near-term regional climate change prediction[J]. Nature Communications, 2013, 4: 1715
URL pmid: 23591882 |
[28] | Smith D M, Scaife A A, Boer G J, et al. Real-time multi-model decadal climate predictions[J]. Climate Dynamics, 2013, 41(11-12):2875-2888 |
[29] | Wu B, Zhou T J, Li C, et al. Improved decadal prediction of Northern-Hemisphere summer land temperature[J]. Climate Dynamics, 2019, 53(3-4):1357-1369 |
[30] | Taylor A L, Dessai S, de Bruin, et al. Communicating uncertainty in seasonal and interannual climate forecasts in Europe[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2055):20140454 |
[31] | Towler E, PaiMazumder D. Done J. Toward the application of decadal climate predictions[J]. Journal of Applied Meteorology and Climatology, 2018, 57(3):555-568 |
[32] | 魏麟骁, 辛晓歌, 程炳岩, 等. BCC_CSM1.1气候模式年代际试验对中国气候的回报能力评估[J]. 气候变化研究进展, 2016, 12(4):294-302. |
Wei L X, Xin X G, Chen B Y, et al. Hindcast of China climate with decadal experiment by BCC-CSM1.1 climate model[J]. Climate Change Research, 2016, 12(4):294-302 (in Chinese) | |
[33] | 周鑫, 李清泉, 孙秀博, 等. BCC_CSM1.1模式对我国气温的模拟和预估[J]. 应用气象学报, 2014, 25(1):95-106. |
Zhou X, Li Q Q, Sun X B, et al. Simulation and projection of temperature in China with BCC_CSM1.1 model[J]. Journal of Applied Meteorological Science, 2014, 25(1):95-106 (in Chinese) | |
[34] | Swart N C, Cole J N S, Kharin V V, et al. The Canadian Earth System Model version 5 (CanESM5.0.3)[J]. Geoscientific Model Development, 2019, 12(11):4823-4873 |
[35] | Verseghy D L. The Canadian land surface scheme (CLASS): its history and future[J]. Atmosphere-Ocean, 2000, 38(1):1-13 |
[36] | Arora V K. Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models[J]. Agricultural and Forest Meteorology, 2003, 118(1-2):21-47 |
[37] | Bouillon S, Morales M, Miguel A, et al. An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids[J]. Ocean Modelling, 2009, 27(3):174-184 |
[38] | Numaguti A, Takahashi M, Nakajima T, et al. Description of CCSR/NIES atmospheric general circulation model[J]. Center for Global Environmental Research Supercomputer Monograph Report, 1997, 3: 1-48 |
[39] | Takata K, Emori S, Watanabe T. Development of the Minimal Advanced Treatments of Surface Interraction and RunOff (MATSIRO)[J]. Global and Planetary Change, 2003, 38(1):209-222 |
[40] | Oki T, Sud Y C. Design of Total Runoff Integrating Pathways (TRIP): a global river channel network[J]. Earth Interactions, 1998, 2(1):1-37 |
[41] | Hasumi H. CCSR Ocean Component Model (COCO) version 4.0 [R]. Tokyo: Center for Climate System Research Report, 2006: 103 |
[42] | Tatebe H, Ogura T, Nitta T, et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6[J]. Geoscientific Model Development, 2019, 12(7):2727-2765 |
[43] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学, 2013, 56(4):1102-1111. |
Wu J, Gao X J. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4):1102-1111 (in Chinese) | |
[44] | CMIP-WGCM-WGSIP Decadal Climate Prediction Panel. Data and bias correction for decadal clim-ate predictions [R/OL]. 2011 [2019-11-27]. https://www.wcrp-climate.org/decadal/references/DCPP_Bias_Correction.pdf |
[45] | Magnusson L, Alonso-Balmaseda M, Corti S, et al. Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors[J]. Climate Dynamics, 2013, 41(9-10):2393-2409 |
[46] | Saha S, Nadiga S, Thiaw C, et al. The NCEP climate forecast system[J]. Journal of Climate, 2006, 19(15):3483-3517 |
[47] | Goddard L, Kumar A, Solomon A, et al. A verification framework for interannual-to-decadal predictions experiments[J]. Climate Dynamics, 2013, 40(1-2):245-272 |
[48] | 何慧根, 李巧萍, 吴统文, 等. 月动力延伸预测模式业务系统DERF2.0对中国气温和降水的预测性能评估[J]. 大气科学, 2014, 38(5):950-964. |
He H G, Li Q P, Wu T W, et al. Temperature and precipitation evaluation of monthly dynamic extended range forecast operational system DERF2.0 in China[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5):950-964 (in Chinese) | |
[49] | Yu E T, Sun J Q, Chen H P, et al. Evaluation of a high-resolution historical simulation over China: climatology and extremes[J]. Climate Dynamics, 2015, 45(7):2013-2031 |
[1] | 纪多颖,张倩,骆祉丞,陈扬馨. CMIP6二氧化碳移除模式比较计划(CDRMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 457-464. |
[2] | 张丽霞,陈晓龙,辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519-525. |
[3] | 宋振亚,鲍颖,乔方利. FIO-ESM v2.0模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 558-565. |
[4] | 钱诚,张文霞. CMIP6检测归因模式比较计划(DAMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 469-475. |
[5] | 曹剑,马利斌,李娟,王斌,王波. NUIST-ESM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 566-570. |
[6] | 王磊,包庆,何编. CMIP6高分辨率模式比较计划(HighResMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 498-502. |
[7] | 辛晓歌,吴统文,张洁,张芳,李伟平,张艳武,路屹雄,房永杰,颉卫华,张莉,董敏,史学丽,李江龙,储敏,刘茜霞,颜京辉. BCC模式及其开展的CMIP6试验介绍[J]. 气候变化研究进展, 2019, 15(5): 533-539. |
[8] | 唐彦丽,俞永强,李立娟,董理,谢瑾博,林鹏飞,普业,王斌,王妍,贾炳浩,秦佩华,宋米荣,谢正辉. FGOALS-g模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 551-557. |
[9] | 林岩銮,黄小猛,梁逸爽,秦怡,徐世明,黄文誉,徐芳华,刘利,王勇,彭怡然,王兰宁,薛巍,付昊桓,张广俊,王斌,李锐喆,张诚,卢麾,阳坤,罗勇,白玉琪,宋振亚,王敏琦,赵文婕,张峰,徐敬蘅,赵曦,陆春松,骆亦其,陈奕兆,胡勇,唐强,陈德训,杨广文,宫鹏. 清华大学CIESM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 545-550. |
[10] | 吴波,辛晓歌. CMIP6年代际气候预测计划(DCPP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 476-480. |
[11] | 容新尧,李建,陈昊明,辛羽飞,苏京志,华莉娟,张正秋. CAMS-CSM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 540-544. |
[12] | 周天军,邹立维,陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456. |
[13] | 周天军,陈晓龙,何编,吴波,张丽霞. 全球季风模式比较计划(GMMIP)概述[J]. 气候变化研究进展, 2019, 15(5): 493-497. |
[14] | 曹龙. CMIP6地球工程模式比较计划(GeoMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 487-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|