[1] | Veronika E, Sandrine B, Meehl G A , et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6), experimental design and organization[J]. Geoscientific Model Development, 2016,9(5):1937-1958 | [2] | 周天军, 邹立维, 吴波 , 等. 中国地球气候系统模式研究进展: CMIP计划实施近20年回顾[J]. 气象学报, 2014,72(5):892-907. | [2] | Zhou T J, Zou L W, Wu B , et al. Development of Earth/climate system models in China: a review from the Coupled Model Intercomparison Project perspective[J]. Acta Meteorologica Sinica, 2014,72(5):892-907 (in Chinese) | [3] | Shaffrey L C, Stevens I, Norton W A , et al. U.K. HiGEM: the new U.K. High-Resolution Global Environment Model: model description and basic evaluation[J]. Journal of Climate, 2009,22:1861-1896 | [4] | Doi T, Vecchi G A, Rosati A J , et al. Biases in the Atlantic ITCZ in seasonal-interannual variations for a coarse- and a High-Resolution Coupled Climate Model[J]. Journal of Climate, 2012,23:5494-5511 | [5] | Demory M E, Vidale P L, Roberts M J , et al. The role of horizontal resolution in simulating drivers of the global hydrological cycle[J]. Climate Dynamic, 2014,42(7-8):2201-2225 | [6] | Murakami H, Vecchi G A, Underwood S , et al. Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model[J]. Journal of Climate, 2015,28:9058-9079 | [7] | Zappa G, Shaffrey L, Hodges K . Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-Interim reanalysis?[J]. Monthly Weather Review, 2014,142:2596-2608 | [8] | Mahajan S, Evans K J, Branstetter M , et al. Fidelity of precipitation extremes in high resolution global climate simulations[J]. Procedia Computer Science, 2015,51:2178-2187 | [9] | Haarsma R J, Roberts M J, Vidale P L , et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6[J]. Geoscientific Model Development, 2016,9:4185-4208 | [10] | Li J X, Bao Q, Liu Y M , et al. Evaluation of the computational performance of the Finite-volume Atmospheric Model of the IAP/LASG (FAMIL) on a high-performance computer[J]. Atmospheric and Oceanic Science Letters, 2017,10:329-336 | [11] | Fu H H, Liao J F, Ding N , et al. Redesigning CAM-SE for peta-scale climate modeling performance and ultra-high resolution on sunway Taihulight [C]//International Conference for High Performance Computing, Networking, Storage and Analysis. USA: IEEE, 2017 | [12] | Zhou L J, Liu Y M, Bao Q , et al. Computational performance of the high-resolution atmospheric model FAMIL[J]. Atmospheric and Oceanic Science Letters, 2012,5:355-359 | [13] | Gates W L . AMIP: the Atmospheric Model Intercomparison Project[J]. Bulletin of the American Meteorological Society, 1992,73(12):1962-1970 | [14] | Wu T W, Lu Y X, Fang Y J , et al. The Beijing Climate Center Climate System Model (BCC-CSM): main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development Discussions, 2019,12(4):1573-1600 | [15] | 包庆, 吴小飞, 李矜霄 , 等. 2018—2019年秋冬季厄尔尼诺和印度洋偶极子的预测[J]. 科学通报, 2019,64(1):73-78. | [15] | Bao Q, Wu X F, Li J X , et al. Outlook for El Ni?o and the Indian Ocean Dipole in autumn-winter 2018-2019[J]. Chinese Science Bulletin, 2019,64(1):73-78 (in Chinese) | [16] | Zhou L J, Bao Q, Liu Y M , et al. Global energy and water balance: characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1)[J]. Journal of Advances in Modeling Earth Systems, 2015,7(1):1-20 | [17] | Li J X, Bao Q, Liu Y M , et al. Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics[J]. Journal of Advances in Modeling Earth Systems, 2019,11(4):1117-1136 | [18] | Harris L M, Lin S J, Tu C Y . High-resolution climate simulations using GFDL HiRAM with a stretched global grid[J]. Journal of Climate, 2016,29(11):4293-4314 | [19] | 孙泓川, 周广庆, 曾庆存 . IAP第四代大气环流模式的气候系统模式模拟性能评估[J]. 大气科学, 2012,36(2):215-233. | [19] | Sun H C, Zhou G Q, Zeng Q C . Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component[J]. Chinese Journal of Atmospheric Science, 2012,36(2):215-233 (in Chinese) | [20] | 徐忠峰, 韩瑛, 杨宗良 . 区域气候动力降尺度方法研究综述[J]. 中国科学: 地球科学, 2019,49(3):487-498. | [20] | Xu Z F, Han Y, Yang Z L . Dynamical downscaling of regional climate: a review of methods and limitations[J]. Science China: Earth Sciences, 2019,49(3):487-498 | [21] | Rummukainen M . Added value in regional climate modeling[J]. WIREs Climate Change, 2016,7(1):145-159 | [22] | Jacob D, Petersen J, Eggert B , et al. EURO-CORDEX: new high-resolution climate change projections for European impact research[J]. Regional Environmental Change, 2014,14(2):563-578 | [23] | Beno?t V, Demory M E, Vidale P L , et al. Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution[J]. Climate Dynamics, 2019,52(11):6817-6846 |
|