Please wait a minute...
 
气候变化研究进展  2019, Vol. 15 Issue (1): 95-102    DOI: 10.12006/j.issn.1673-1719.2018.071
  温室气体排放 本期目录 | 过刊浏览 | 高级检索 |
鄂尔多斯盆地CO2地质封存适宜性与潜力评价
杨红1,2,赵习森1,2,康宇龙1,2,陈龙龙1,2,黄春霞1,2,王宏1,2
1 陕西延长石油(集团)有限责任公司研究院,西安 710075
2 陕西省二氧化碳封存与提高采收率重点实验室,西安 710075
Evaluation on geological sequestration suitability and potential of CO2 in Ordos Basin
Hong YANG1,2,Xi-Sen ZHAO1,2,Yu-Long KANG1,2,Long-Long CHEN1,2,Chun-Xia HUANG1,2,Hong WANG1,2
1 Research Institute of Shaanxi Yanchang Petroleum (Group) Co., Ltd, Xi’an 710075, China;
2 CO 2 Sequestration and Enhanced Oil Recovery Key Laboratory of Shaanxi Province, Xi’an 710075, China;
下载:  HTML ( 4 )   PDF (1165KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对目前利用层次分析法对CO2地质封存进行适宜性评价过程中,极少结合研究区域实际计算低层次评价指标权重,对适宜性评价结果又缺少进一步的分析,结合鄂尔多斯盆地的地质特征,通过计算指标组成权重和适宜性得分对盆地开展了CO2地质封存适宜性评价,并以适宜区杏子川油田长4+5盖层为例,开展了盖层封闭性评价实验研究。同时,采用相应的计算方法对鄂尔多斯盆地深部咸水层和油藏的CO2地质封存潜力进行了计算。结果表明:鄂尔多斯盆地在三叠系开展CO2地质封存的适宜性最好,石炭-二叠系和奥陶系则次之;杏子川油田三叠系延长组长4+5盖层对区域开展CO2地质封存具备良好的封闭性;鄂尔多斯盆地深部咸水层和油藏的CO2有效封存量分别为1.33×10 10 t和1.91×10 9 t,且在延长石油吴起、靖边及杏子川油田共有56个CO2地质封存适宜区,其CO2有效封存量可达1.77×10 8 t。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨红
赵习森
康宇龙
陈龙龙
黄春霞
王宏
关键词:  CO2地质封存  鄂尔多斯盆地  盖层封闭性  层次分析法  封存潜力    
Abstract: 

During the process of CO2 geological sequestration suitability evaluation with analytic hierarchy method, problems include that weight of low level evaluation index is calculated with little consideration of the real research region and suitability evaluation result isn’t studied further. To solve the above problems, through calculating the index composition weight and suitability score, CO2 geological sequestraion suitability evaluation in Ordos Basin was carried out combined with its geological feature. Then, the research of caprock closure, taking the Chang 4+5 layer in Xingzichuan oilfield for example was done. At the same time, CO2 geological sequestration potential in deep saline aquifer and reservoir was calculated with corresponding methods. Calculated results show that the CO2 geological sequestraion suitability in Triassic is the best, closely followed by Carboniferous-Permian and Ordovician. Meanwhile, sealing ability of Chang 4+5 caprock in Xingzichuan oilfield is good for CO2 geological sequestraion. Moreover, the potential of CO2 geological sequestration in deep saline aquifer and reservoir is 1.33×10 10 t and 1.91×10 9t, respectively. In addition, there are 56 suitable areas in Wuqi, Jingbian and Xingzichuan blocks in Yanchang Petroleum and its CO2 geological sequestraion potential is about 1.77×10 8 t.

Key words:  CO2 geological sequestration    Ordos Basin    Caprock closure    Analytic hierarchy process    Sequestraion potential
收稿日期:  2018-05-14      修回日期:  2018-08-14           出版日期:  2019-01-30      发布日期:  2019-01-30      期的出版日期:  2019-01-30
基金资助: 国家重点研发计划(2018YFB0605500);国家重点研发计划(2016YFE0102500);陕西延长石油集团有限责任公司研究院青年基金项目(ycsy2018qnjj-B-04)
作者简介:  杨红,男,工程师,yh_cup2011@sina.com
引用本文:    
杨红,赵习森,康宇龙,陈龙龙,黄春霞,王宏. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展, 2019, 15(1): 95-102.
Hong YANG,Xi-Sen ZHAO,Yu-Long KANG,Long-Long CHEN,Chun-Xia HUANG,Hong WANG. Evaluation on geological sequestration suitability and potential of CO2 in Ordos Basin. Climate Change Research, 2019, 15(1): 95-102.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.071  或          http://www.climatechange.cn/CN/Y2019/V15/I1/95
表1  CO2地质封存评价指标体系[12,13,14,15]及其权重
图1  区域盖层成分分类
图2  杏1013井毛管压力曲线
图3  杏1013井喉道和孔隙半径分布
图4  杏1013井核磁共振T2图谱(a)和气水相对渗透率曲线(b) 注:Sw表示含水饱和度,Krg表示气相相对渗透率,Krw表示水相相对渗透率。
[1] 姚素平, 汤中一, 谭丽华 , 等. 江苏省CO2煤层地质封存条件与潜力评价[J]. 高校地质学报, 2012,18(2):203-214
[2] 段鹏飞 . 河东煤田CO2煤层地质封存条件及潜力评价[J]. 中国煤炭地质, 2015,27(10):1-5
[3] 赵晓亮, 廖新维, 王万福 , 等. 二氧化碳埋存潜力评价模型与关键参数的确定[J]. 特种油气藏, 2013,20(6):72-74
[4] 任相坤, 崔永君, 步学朋 , 等. 鄂尔多斯盆地CO2地质封存潜力分析[J]. 中国能源, 2010 ( 1):29-32
[5] 吾尔娜, 吴昌志, 季峻峰 , 等. 松辽盆地徐家围子断陷玄武岩气藏储层的CO2封存潜力研究[J]. 高校地质学报, 2012,18(2):239-247
[6] 钟大康 . 致密油储层微观特征及其形成机理: 以鄂尔多斯盆地长6-长7段为例[J]. 石油与天然气地质, 2017,38(1):49-61
[7] 任战利, 李文厚, 梁宇 , 等. 鄂尔多斯盆地东南部延长组致密油成藏条件及主控因素[J]. 石油与天然气地质, 2014,35(2):190-198
[8] 王香增, 高胜利, 高潮 . 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发, 2014 ( 3):294-304
[9] 梁飞, 黄文辉, 牛君 . 鄂尔多斯盆地西南缘二叠系山西组山1段-下石盒子组盒8段物源分析[J]. 沉积学报, 2018 ( 1):142-153
[10] 张福东, 李君, 魏国齐 , 等. 低生烃强度区致密砂岩气形成机制: 以鄂尔多斯盆地天环坳陷北段上古生界为例[J]. 石油勘探与开发, 2018 ( 1):73-81
[11] 贺聪, 吉利明, 苏奥 , 等. 鄂尔多斯盆地南部延长组热水沉积作用与烃源岩发育的关系[J]. 地学前缘, 2017 ( 6):277-285
[12] 文冬光, 郭建强, 张森琦 , 等. 中国二氧化碳地质储存研究进展[J]. 中国地质, 2014,41(5):1716-1723
[13] 郭建强, 张森琦, 刁玉杰 , 等. 深部咸水层CO2地质储存工程场地选址技术方法[J]. 吉林大学学报: 地球科学版, 2011,41(4):1084-1091
[14] 井文君, 杨春和, 李银平 , 等. 基于层次分析法的盐穴储气库选址评价方法研究[J]. 岩土力学, 2012,33(9):2683-2690
[15] 罗超, 贾爱林, 魏铁军 , 等. 鄂尔多斯盆地子洲地区山2段咸水层CO2埋存条件与潜力评价[J]. 东北石油大学学报, 2016,40(1):14-24
[16] Bachu S, Bonijoly D, Bradshaw J , et al. CO2 storage capacity estimation: methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007,1(4):430-443
doi: 10.1016/S1750-5836(07)00086-2
[17] Bradshaw J, Bachu S, Bonijoly D , et al. CO2 storage capacity estimation: issues and development of standards[J]. International Journal of Greenhouse Gas Control, 2007,1(1):62-68
doi: 10.1016/S1750-5836(07)00027-8
[18] Span P, Wagner W . A new equation of state for carbon dioxide covering the f1uid region from the triple-point temperament to 1100 k at pressure up to 800 MPa[J]. Journal of Chemical Reference Data, 2001,25(6):1509-1596
[19] CSLF (Carbon Sequestration Leadership Forum). Estimation of CO2 storage capacity in geological media [R/OL]. 2007 [ 2018- 05- 01].
[20] CSLF (Carbon Sequestration Leadership Forum). A task force for review and development of standards with regards to storage capacity measurement [R/OL]. 2005 [ 2018- 05- 01].
[21] Bachu S, Stewart S . Geological storage of anthropogenic carbon dioxide in the Western Canada Sedimentary Basin: suitability analysis[J]. Journal of Canadian Petroleum Technology, 2002,41(2):32-40
[22] Bachll S, Shaw J C . Estimation of oil recovery and CO2 storage capacity in CO2 EOR incorporating the effect of underlying aquifers[J]. SPE 89340, 2004: 13
[23] Bachu S, Gunter W D, Perkins E H . Aquifer disposal of CO2: hydrodynamic and mineral trapping[J]. Energy Conversion and Management, 1994,35(4):269-279
doi: 10.1016/0196-8904(94)90060-4
[1] 周景博, 杨小明, 何霄嘉, 尹云鹤, 赵东升. 气候变化适应措施的选择与偏好分析——基于青藏高原生态功能保护区的调查[J]. 气候变化研究进展, 2016, 12(6): 484-493.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备10018055-1号
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn