| [1] |
姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34 (11): 1203-1209.
|
|
Yao T D, Wu G J, Xu B Q, et al. Asian Water Tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1203-1209 (in Chinese)
|
| [2] |
Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian Water Towers[J]. Science, 2010, 328: 1382-1385
doi: 10.1126/science.1183188
pmid: 20538947
|
| [3] |
Pritchard H D. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569: 649-654
|
| [4] |
Biemans H, Siderius C, Lutz A F, et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic plain[J]. Nature Sustainability, 2019, 2: 594-601
doi: 10.1038/s41893-019-0305-3
|
| [5] |
Lutz A F, Immerzeel W W, Siderius C, et al. South Asian agriculture increasingly dependent on melt-water and groundwater[J]. Nature Climate Change, 2022, 12: 566-573
|
| [6] |
Huss M, Hock R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change, 2018, 8: 135-140
doi: 10.1038/s41558-017-0049-x
|
| [7] |
Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577: 364-369
|
| [8] |
Yao T, Bolch T, Chen D, et al. The imbalance of the Asian Water Tower[J]. Nature Reviews Earth & Environment, 2022, 3: 618-632
|
| [9] |
Yao T D, Xue Y K, Chen D L, et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100 (3): 423-444
|
| [10] |
Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667
|
| [11] |
Bhattacharya A, Bolch T, Mukherjee K, et al. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s[J]. Nature Communications, 2021, 12: 4133
doi: 10.1038/s41467-021-24180-y
pmid: 34226559
|
| [12] |
Bolch T, Kulkarni A, Kääb A, et al. The state and fate of Himalayan glaciers[J]. Science, 2012, 336 (6079): 310-314
doi: 10.1126/science.1215828
pmid: 22517852
|
| [13] |
Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000-2016[J]. Nature Geoscience, 2017, 10: 668-673
doi: 10.1038/NGEO2999
pmid: 28890734
|
| [14] |
牟建新, 李忠勤, 张慧, 等. 全球冰川面积现状及近期变化: 基于2017年发布的第6版Randolph冰川编目[J]. 冰川冻土, 2018, 40 (2): 238-248.
doi: 10.7522/j.issn.1000-0240.2018.0028
|
|
Mu J X, Li Z Q, Zhang H, et al. The global glacierized area: current situation and recent change, based on the Randolph Glacier Inventory (RGI 6.0) published in 2017[J]. Journal of Glaciology and Geocryology, 2018, 40 (2): 238-248 (in Chinese)
doi: 10.7522/j.issn.1000-0240.2018.0028
|
| [15] |
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70 (1): 3-16.
doi: 10.11821/dlxb201501001
|
|
Liu S Y, Yao X J, Guo W Q, et al. The contemporary glaciers in China based on the second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015, 70 (1): 3-16 (in Chinese)
doi: 10.11821/dlxb201501001
|
| [16] |
Hugonnet R, McNabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592 (7856): 726-731
|
| [17] |
姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64 (27): 2770-2782.
|
|
Yao T D, Yu W S, Wu G J, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin, 2019, 64 (27): 2770-2782 (in Chinese)
|
| [18] |
王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34 (11): 1220-1232.
|
|
Wang N L, Yao T D, Xu B Q, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1220-1232 (in Chinese)
|
| [19] |
Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees celsius on Asia’s glaciers[J]. Nature, 2017, 549: 257-260
|
| [20] |
Shean D E, Bhushan S, Montesano P, et al. A systematic, regional assessment of High Mountain Asia glacier mass balance[J]. Frontiers in Earth Science, 2020, 7: 1-19
|
| [21] |
European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 reanalysis[R/OL]. 2017 [2024-05-01]. https://doi.org/10.5065/D6X34W69
|
| [22] |
Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experi-mental design and organization[J]. Geoscientific Model Development, 2016, 9: 1937-1958
|
| [23] |
Tokarska K B, Stolpe M B, Sippel S, et al. Past warming trend constrains future warming in CMIP6 models[J]. Science Advances, 2020, 6: eaaz9549
|
| [24] |
Wijngaard R R, Steiner J F, Kraaijenbrink P D A, et al. Modeling the response of the Langtang glacier and the Hintereisferner to a changing climate since the little ice age[J]. Frontiers in Earth Science, 2019, 7: 1-24
|
| [25] |
邬光剑, 姚檀栋, 王伟财, 等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019, 34 (11): 1285-1292.
|
|
Wu G J, Yao T D, Wang W C, et al. Glacial hazards on Tibetan Plateau and surrounding alpines[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1285-1292 (in Chinese)
|
| [26] |
Kraaijenbrink P D A, Stigter E E, Yao T, et al. Climate change decisive for Asia’s snow meltwater supply[J]. Nature Climate Change, 2021, 11: 591-597
|
| [27] |
Armstrong R L, Rittger K, Brodzik M J, et al. Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow[J]. Regional Environmental Change, 2019, 19: 1249-1261
doi: 10.1007/s10113-018-1429-0
|
| [28] |
车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34 (11): 1247-1253.
|
|
Che T, Hao X H, Dai L Y, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1247-1253 (in Chinese)
|
| [29] |
姜琪, 罗斯琼, 文小航, 等. 1961—2014年青藏高原积雪时空特征及其影响因子[J]. 高原气象, 2020, 39 (1): 24-36.
doi: 10.7522/j.issn.1000-0534.2019.00022
|
|
Jiang Q, Luo S Q, Wen X H, et al. Spatial-temporal characteristics of snow and influence factors in the Qinghai-Tibetan Plateau from 1961 to 2014[J]. Plateau Meteorology, 2020, 39 (1): 24-36 (in Chinese)
doi: 10.7522/j.issn.1000-0534.2019.00022
|
| [30] |
蒋玲梅, 潘方博, 王功雪, 等. 亚洲水塔区域MODIS+FY4A逐日无云积雪覆盖度数据集2019—2021[DB/OL]. 国家青藏高原数据中心, 2023 [2024-05-01]. https://doi.org/10.11888/Cryos.tpdc.300551.
|
|
Jiang L M, Pan F B, Wang G X, et al. MODIS+FY4A daily cloud-free fractional snow cover dataset of the Asian Water Tower region (2019-2021)[DB/OL]. National Tibetan Plateau/Third Pole Environment Data Center, 2023 [2024-05-01]. https://doi.org/10.11888/Cryos.tpdc.272503 (in Chinese)
|
| [31] |
Pan F, Jiang L, Wang G, et al. MODIS daily cloud-gap-filled fractional snow cover dataset of the Asian Water Tower region (2000-2022)[J]. Earth System Science Data, 2024, 16: 2501-2523
|
| [32] |
Lutz A F, Immerzeel W W, Shrestha A B, et al. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation[J]. Nature Climate Change, 2014, 4: 587-592
|
| [33] |
Wulf H, Bookhagen B, Scherler D. Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling[J]. Advances in Water Resources, 2016, 88: 152-169
|
| [34] |
Immerzeel W W, Pellicciotti F, Bierkens M F P. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds[J]. Nature Geoscience, 2013, 6: 742-745
|
| [35] |
Salerno F, Guyennon N, Yang K, et al. Local cooling and drying induced by Himalayan glaciers under global warming[J]. Nature Geoscience, 2023, 16 (12): 1120-1127
|
| [36] |
Zhang H, Immerzeel W W, Zhang F, et al. Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau[J]. Science of the Total Environment, 2022, 803: 149889
|
| [37] |
Zhang F, Thapa S, Immerzeel W, et al. Water availability on the Third Pole: a review[J]. Water Security, 2019, 7: 100033
|