[1] |
Swart R, Amann M, Raes F, et al. A good climate for clean air: linkages between climate change and air pollution[J]. Climatic Change, 2004, 66 (3): 263-269
doi: 10.1023/B:CLIM.0000044677.41293.39
URL
|
[2] |
郑佳佳, 孙星, 张牧吟, 等. 温室气体减排与大气污染控制的协同效应: 国内外研究综述[J]. 生态经济, 2015, 31 (11): 133-137.
|
|
Zheng J J, Sun X, Zhang M Y, et al. Review of researches on the synergistic effect of GHGs mitigation and air pollution control at home and abroad[J]. Ecological Economy, 2015, 31 (11): 133-137 (in Chinese)
|
[3] |
毛显强, 邢有凯, 胡涛, 等. 中国电力行业硫、氮、碳协同减排的环境经济路径分析[J]. 中国环境科学, 2012, 32 (4): 748-756.
|
|
Mao X Q, Xing Y K, Hu T, et al. An environmental-economic analysis of carbon, sulfur and nitrogen co-reduction path for China’s power industry[J]. China Environmental Science, 2012, 32 (4): 748-756 (in Chinese)
|
[4] |
刘胜强, 毛显强, 胡涛, 等. 中国钢铁行业大气污染与温室气体协同控制路径研究[J]. 环境科学与技术, 2012, 35 (7): 168-174.
|
|
Liu S Q, Mao X Q, Hu T, et al. Roadmap of co-control of air pollutants and GHGs in iron and steel industry in China[J]. Environmental Science & Technology, 2012, 35 (7): 168-174 (in Chinese)
|
[5] |
周颖, 张宏伟, 蔡博峰, 等. 水泥行业常规污染物和二氧化碳协同减排研究[J]. 环境科学与技术, 2013, 36 (12): 164-168, 180.
|
|
Zhou Y, Zhang H W, Cai B F, et al. Synergetic reduction of local pollutants and CO2 from cement[J]. Environmental Science & Technology, 2013, 36 (12): 164-168, 180 (in Chinese)
|
[6] |
唐伟, 郑思伟, 何平, 等. 基于情景分析的杭州市机动车尾气排放控制协同效应研究[J]. 环境科学学报, 2019, 39 (6): 2033-2042.
|
|
Tang W, Zheng S W, He P, et al. Study on the co-benefit of motor vehicle emission control based on scenario analysis in Hangzhou[J]. Acta Scientiae Circumstantiae, 2019, 39 (6): 2033-2042 (in Chinese)
|
[7] |
邢有凯, 毛显强, 冯相昭, 等. 城市蓝天保卫战行动协同控制局地大气污染物和温室气体效果评估: 以唐山市为例[J]. 中国环境管理, 2020, 12 (4): 20-28.
|
|
Xing Y K, Mao X Q, Feng X Z, et al. An effectiveness evaluation of co-controlling local air pollutants and GHGs by implementing blue sky defense action at city level: a case study of Tangshan city[J]. Chinese Journal of Environmental Management, 2020, 12 (4): 20-28 (in Chinese)
|
[8] |
李丽平, 周国梅, 季浩宇. 污染减排的协同效应评价研究: 以攀枝花市为例[J]. 中国人口∙资源与环境, 2010, 20 (S2): 91-95.
|
|
Li L P, Zhou G M, Ji H Y. Study of co-benefits assessment of pollution reduction: a case study in Panzhihua[J]. China Population, Resources and Environment, 2010, 20 (S2): 91-95 (in Chinese)
|
[9] |
李丽平, 姜苹红, 李雨青, 等. 湘潭市“十一五”总量减排措施对温室气体减排协同效应评价研究[J]. 环境与可持续发展, 2012, 37 (1): 36-40.
|
|
Li L P, Jiang P H, Li Y Q, et al. Study of co-benefits assessment of pollution reduction on greenhouse gas reduction in Xiangtan during 11th Five-Year Plan[J]. Environment and Sustainable Development, 2012, 37 (1): 36-40 (in Chinese)
|
[10] |
胡涛, 毛显强, 钱翌, 等. 协同控制空气污染物与温室气体: 以乌鲁木齐市为案例[M]. 北京: 中国环境出版社, 2016.
|
|
Hu T, Mao X Q, Qian Y, et al. Co-control effects for air pollutants and greenhouse gases: a case study in Urumqi[M]. Beijing: China Environment Press, 2016 (in Chinese)
|
[11] |
许光清, 温敏露, 冯相昭, 等. 城市道路车辆排放控制的协同效应评价[J]. 北京社会科学, 2014 (7): 82-90.
|
|
Xu G Q, Wen M L, Feng X Z, et al. Co-benefits of road transport policy in reducing air pollutants and greenhouse gas emissions in China[J]. Beijing Social Sciences, 2014 (7): 82-90 (in Chinese)
|
[12] |
李媛媛, 王敏燕, 李丽平, 等. 无水印刷技术协同减排污染物与温室气体案例评估[J]. 气候变化研究进展, 2021, 17 (3): 289-295.
|
|
Li Y Y, Wang M Y, Li L P, et al. Assessment of emission co-reduction of pollutants and greenhouse gases by waterless printing technology[J]. Climate Change Research, 2021, 17 (3): 289-295 (in Chinese)
|
[13] |
曾令可, 李治, 李萍, 等. 陶瓷行业碳排放现状及计算依据[J]. 山东陶瓷, 2014, 37 (1): 3-7.
|
|
Zeng L K, Li Z, Li P, et al. The current situation and calculation basis of carbon emission in ceramic industry[J]. Shandong Ceramics, 2014, 37 (1): 3-7 (in Chinese)
|
[14] |
王彦静, 刘宇, 崔素萍, 等. 我国建筑陶瓷行业碳排放及减排潜力分析[J]. 材料导报, 2018, 32 (22): 3967-3972.
|
|
Wang Y J, Liu Y, Cui S P, et al. Research on carbon emission and reduction potential of building ceramics in China[J]. Materials Reports, 2018, 32 (22): 3967-3972 (in Chinese)
|
[15] |
李名, 张杨. 浅析陶瓷行业大气环境污染现状及防治对策[J]. 佛山陶瓷, 2012, 22 (6): 38-40.
|
|
Li M, Zhang Y. Present situation and prevention countermeasures of atmospheric environmental pollution in ceramic industry[J]. Foshan Ceramics, 2012, 22 (6): 38-40 (in Chinese)
|
[16] |
罗民华. 陶瓷工业节能减排与污染综合治理[M]. 北京: 中国建材工业出版社, 2017, 9: 23-24.
|
|
Luo M H. Energy saving, emission reduction and comprehensive pollution control of ceramic industry[M]. Beijing: China Building Materials Industry Press, 2017, 9: 23-24 (in Chinese)
|
[17] |
屈加豹, 王鹏, 伯鑫, 等. 超低改造下中国火电排放清单及分布特征[J]. 环境科学, 2020, 41 (9): 3969-3975.
|
|
Qu J B, Wang P, Bo X, et al. Inventory and distribution characteristics of China’s thermal power emissions under ultra-low reconstruction[J]. Environmental Science, 2020, 41 (9): 3969-3975 (in Chinese)
|
[18] |
朱文学. 热风炉原理与技术[M]. 北京: 化学工业出版社, 2005.
|
|
Zhu W X. Principle and technology of hot blast stove[M]. Beijing: Chemical Industry Press, 2005 (in Chinese)
|
[19] |
李家铎, 钟保民, 严文记. 南方多雨地区干法制粉技术的应用分析与探讨[J]. 陶瓷, 2018 (1): 9-12.
|
|
Li J D, Zhong B M, Yan W J. Application analysis and discussion of dry milling technology in rainy areas of South China[J]. Ceramics, 2018 (1): 9-12 (in Chinese)
|
[20] |
黄慧宁, 钟保民, 黄宾, 等. 陶瓷干法制粉工艺与设备[M]. 广州: 华南理工大学出版社, 2020.
|
|
Huang H N, Zhong B M, Huang B, et al. Ceramic dry-power technology and equipment[M]. Guangzhou: South China University of Technology Press, 2020 (in Chinese)
|