|
Climate Change Research ›› 2020, Vol. 16 ›› Issue (4): 442-452.doi: 10.12006/j.issn.1673-1719.2019.205
• Changes in Climate System • Previous Articles Next Articles
FENG Jing1,2, LI Chun1,2(), FAN Lei1,2
Received:
2019-09-05
Revised:
2019-11-22
Online:
2020-07-30
Published:
2020-08-05
Contact:
LI Chun
E-mail:lichun7603@ouc.edu.cn
FENG Jing, LI Chun, FAN Lei. Differences of decadal oscillations between global warming of 1.5℃ and 2℃ in the North Pacific[J]. Climate Change Research, 2020, 16(4): 442-452.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2019.205
Fig. 3 Total (a), decadal (b), and interannual (c) standard deviation of winter area-average SSTA in North Pacific(Boxplot boundaries are set at the 25th and 75th percentiles)
[1] | IPCC. Climate change 2007: the physical science basis [M]. Cambridge: Cambridge University Press, 2007: 996 |
[2] |
Kosaka Y, Xie S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013,501(7467):403
doi: 10.1038/nature12534 URL |
[3] | Mantua N J, Hare S R, Zhang Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulltin of American Meteorological Society, 1997,78(6):1069-1079 |
[4] |
Chen X Y, Tung K K. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014,345(6199):897-903
doi: 10.1126/science.1254937 URL pmid: 25146282 |
[5] |
England M H, McGregor S, Spence P, et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus[J]. Nature Climate Change, 2014,4(3):222-227
doi: 10.1038/NCLIMATE2106 URL |
[6] |
Liu B, Zhou T J. Atmospheric footprint of the recent warming slowdown[J]. Scientific Reports, 2017,7:40947
URL pmid: 28084457 |
[7] | Huang J B, Zhang X D, Zhang Q Y, et al. Recently amplified Arctic warming has contributed to a continual global warming trend[J]. Nature Climate Change, 2017,7(12):875-879 |
[8] | Di Lorenzo E, Schneider N, Cobb K M, et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change[J]. Geophysical Research Letters, 2008,35(8):L08607 |
[9] | Bond N A, Overland J E, Spillane M, et al. Recent shifts in the state of the North Pacific[J]. Geophysical Research Letters, 2003,30(23):2183 |
[10] |
Yeh S W, Kang Y J, Noh Y, et al. The North Pacific climate transitions of the winters of 1976/77 and 1988/89[J]. Journal of Climate, 2011,24(4):1170-1183
doi: 10.1175/2010JCLI3325.1 URL |
[11] |
吕庆平, 张立凤, 张铭. 冬季北太平洋优势气候模态的转移[J]. 气候变化研究进展, 2016,12(6):494-499.
doi: 10.12006/j.issn.1673-1719.2016.051 URL |
Lü Q P, Zhang L F, Zhang M. The climate shift of the dominant modes of North Pacific during winter[J]. Climate Change Research, 2016,12(6):494-499 (in Chinese) | |
[12] | Alexander G, Barnett T P. Interdecadal modulation of ENSO teleconnections[J]. Bulltin of American Meteorology Society, 1998,79(12):2715-2725 |
[13] |
Newman M, Compo G P, Alexander M A. ENSO-forced variability of the Pacific decadal oscillation[J]. Journal of Climate, 2002,16(23):3853-3857
doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2 URL |
[14] | 王东晓, 谢强, 刘赟, 等. 太平洋年代际海洋变率研究进展[J]. 热带海洋学报, 2003,22(1):76-83. |
Wang D X, Xie Q, Liu Y, et al. A research review of interdecadal climate variability in Pacific Ocean[J]. Journal of Tropical Oceanography, 2003,22(1):76-83 (in Chinese) | |
[15] |
杨修群, 朱益民, 谢倩, 等. 太平洋年代际振荡的研究进展[J]. 大气科学, 2004,28(6):979-992.
doi: 10.3878/j.issn.1006-9895.2004.06.15 URL |
Yang X Q, Zhu Y M, Xie Q, et al. Advances in studies of Pacific Decadal Oscillation[J]. Chinese Journal of Atmospheric Sciences, 2004,28(6):979-992 (in Chinese) | |
[16] | Di Lorenzo E, Schneider N, Cobb K M, et al. ENSO and the North Pacific Gyre Oscillation: an integrated view of Pacific decadal dynamics[R]. Atlanta GA: The 90th American Meteorological Society Annual Meeting, 2010 |
[17] | 张立凤, 吕庆平, 张永垂. 北太平洋涡旋振荡研究进展[J]. 地球科学进展, 2011,26(11):1001-1166. |
Zhang L F, Lv Q P, Zhang Y C. Advances in the study of North Pacific Gyre Oscillation[J]. Advance in Earth Science, 2011,26(11):1001-1166 (in Chinese) | |
[18] |
Saenko O A. Influence of global warming on baroclinic Rossby radius in the ocean: a model intercomparison[J]. Journal of Climate, 2006,19:1354-1360
doi: 10.1175/JCLI3683.1 URL |
[19] | Fang C F, Wu L X, Zhang X. The impact of global warming on the Pacific Decadal Oscillation and the possible mechanism[J]. Advances in Atmosphere Science, 2014,31(1):118-130 |
[20] | Zhang L P, Delworth T. Simulated response of the Pacific Decadal Oscillation to climate change[J]. Journal of Climate, 2016,29(16):5999-6018 |
[21] | Wang J M, Li C. Low-frequency variability and possible changes in the North Pacific simulated by CMIP5 models[J]. Journal of the Meteorological Society of Japan, 2017,95(3):199-211 |
[22] | Wu S, Liu Z Y, Cheng J, et al. Response of North Pacific and North Atlantic decadal variability to weak global warming[J]. Advances in Climate Change Research, 2018,9(2):1027-1039 |
[23] | Kay J E, Deser C, Philips A, et al. The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability[J]. Bulltin of American Meteorology Society, 2015,96:1333-1349 |
[24] | Sanderson B M, Xu Y Y, Tebldi C, et al. Community climate simulations to assess avoided impacts in 1.5℃ and 2℃ futures[J]. Earth System Dynamics, 2017,8(3):827-847 |
[25] | 翟盘茂, 余荣, 周佰铨, 等. 1.5℃增暖对全球和区域影响的研究进展[J]. 气候变化研究进展, 2017,13(5):465-472. |
Zhai P M, Yu R, Zhou B Q, et al. Research progress in impact of 1.5℃ global warming on global and regional scales[J]. Climate Change Research, 2017,13(5):465-472 (in Chinese) | |
[26] | Li D H, Zhou T J, Zou T L, et al. Extreme high temperature events over East Asia in 1.5℃ and 2℃ warmer futures: analysis of NCAR CESM low-warming experiments[J]. Geophysical Research Letters, 2018,2(12):123-134 |
[27] | 姜克隽. IPCC 1.5℃特别报告发布, 温室气体减排新时代的标志[J]. 气候变化研究进展, 2018,14(6):640-642. |
Jiang K J. IPCC special report on 1.5℃ warming: a starting of new era of global mitigation[J]. Climate Change Research, 2018,14(6):640-642 (in Chinese) | |
[28] | 赵宗慈, 罗勇, 黄建斌. 从CMIP5看全球1.5℃升温[J]. 气候变化研究进展, 2018,14(2):218-220. |
Zhao Z C, Luo Y, Huang J B. Understanding global warming of 1.5℃ from CMIP5[J]. Climate Change Research, 2018,14(2):218-220 (in Chinese) | |
[29] | Sanderson B M, O'Neill B C, Tebaldi C. What would it take to achieve the Paris temperature targets?[J]. Geophysical Research Letters, 2016,43(13):7133-7142 |
[30] | Deser C, Alexander M A, Timlin M S. Upper-ocean thermal variations in the North Pacific during 1970-1991[J]. Journal of Climate, 1996,9:1840-1855 |
[31] | Xie S P, Kunitani T, Kubokawa A, et al. Interdecadal thermocline variability in the North Pacific for 1958-97: AGCM simulation[J]. Journal of Physical Oceanography, 2000,30:2798-2813 |
[32] | North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982,110:699-706 |
[33] | Chelton D B, DeSzoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic Rossby radius of deformation[J]. Journal of Climate, 1998,28:433-460 |
[1] | JIA Yang, CUI Peng. The extreme climate background for glacial lakes outburst flood events in Tibet [J]. Climate Change Research, 2020, 16(4): 395-404. |
[2] | DING Kai-Xi, ZHANG Li-Ping, SHE Dun-Xian, ZHANG Qin, XIANG Jun-Wen. Variation of extreme precipitation in Lancang River basin under global warming of 1.5℃ and 2.0℃ [J]. Climate Change Research, 2020, 16(4): 466-479. |
[3] | Dai WANG,Yin-Chuan SUN,Qing-Long YOU. Contribution of Pacific Decadal Oscillation to interdecadal variability of winter minimum temperature in China [J]. Climate Change Research, 2020, 16(1): 70-77. |
[4] | Bo SU,Xue-Jie GAO,Cun-De XIAO. Interpretation of IPCC SR1.5 on cryosphere change and its impacts [J]. Climate Change Research, 2019, 15(4): 395-404. |
[5] | Fang-Ying WU,Qing-Long YOU,Wen-Xin XIE,Ling ZHANG. Temperature change on the Tibetan Plateau under the global warming of 1.5℃and 2℃ [J]. Climate Change Research, 2019, 15(2): 130-139. |
[6] | Qian-Yu ZHA,Chao GAO,Ru YANG,Yue LIU,Tian RUAN,Peng LI. Study on runoff under global warming of 1.5℃ and 2.0℃ in main stream of upper reaches of the Huaihe River [J]. Climate Change Research, 2018, 14(6): 583-592. |
[7] | Ru SUN,Xue HAN,Jie PAN,Wei XIONG,Hui JU. The impact of 1.5℃and 2.0℃global warming on wheat production in China [J]. Climate Change Research, 2018, 14(6): 573-582. |
[8] | Zai-Chun ZHU, Yong-Wen LIU, Zhen LIU, Shi-Long PIAO. Projection of changes in terrestrial ecosystem net primary productivity under future global warming scenarios based on CMIP5 models [J]. Climate Change Research, 2018, 14(1): 31-39. |
[9] | Rui-Qiang YUAN, Ya-Nan WANG, Peng WANG, Shi-Qin WANG, Yu-Hong CHEN. An analysis of precipitation concentration variation characteristics and influential factors in Shanxi province, China [J]. Climate Change Research, 2018, 14(1): 11-20. |
[10] | Xu Yan, Tang Guoli, Zhang Qiang. Analysis of the Variation of the Air Temperature over China During the Global Warming Hiatus Period [J]. Climate Change Research, 2017, 13(6): 569-577. |
[11] | Zhai Panmao, Yu Rong, Zhou Baiquan, Chen Yang, Guo Jianping, Lu Yanyu. Research Progress in Impact of 1.5℃Global Warming on Global and Regional Scales [J]. Climate Change Research, 2017, 13(5): 465-472. |
[12] | Kong Ying, Wang Chenghai. Responses and Changes in the Permafrost and Snow Water Equivalent in the Northern Hemisphere Under A Scenario of 1.5℃ Warming [J]. Climate Change Research, 2017, 13(4): 316-326. |
[13] | Wang Yanjun, Jing Cheng, Cao Lige, Jiang Tong, Sun Hemin, Huang Jinlong. The Population Patterns over China Under the 1.5℃ and 2.0℃ Warming Targets [J]. Climate Change Research, 2017, 13(4): 327-336. |
[14] | Tan Hongjian, Cai Rongshuo, Huang Ronghui. Enhanced Responses of Sea Surface Temperature over Offshore China to Global Warming and Hiatus [J]. Climate Change Research, 2016, 12(6): 500-507. |
[15] | Duan Anmin, Xiao Zhixiang, Wu Guoxiong. Characteristics of Climate Change over the Tibetan Plateau Under the Global Warming During 1979-2014 [J]. Climate Change Research, 2016, 12(5): 374-381. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|