|
Climate Change Research ›› 2021, Vol. 17 ›› Issue (2): 162-174.doi: 10.12006/j.issn.1673-1719.2020.029
• Changes in Climate System • Previous Articles Next Articles
TANG Zi-Chen1,2, LI Qing-Quan1,2, WANG Li-Juan1(), WU Li-Quan3
Received:
2020-02-21
Revised:
2020-08-23
Online:
2021-03-30
Published:
2021-04-02
Contact:
WANG Li-Juan
E-mail:wljfw@163.com
TANG Zi-Chen, LI Qing-Quan, WANG Li-Juan, WU Li-Quan. Preliminary assessment on CMIP6 decadal prediction ability of air temperature over China[J]. Climate Change Research, 2021, 17(2): 162-174.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2020.029
Fig. 2 1961-2010 averaged temperatures of observation (a, d, g, j, m), CanESM5’s historical simulation (b, e, h, k, n) and MIROC6’s decadal hindcasts (c, f, i, l, o) at lead years 1-5 (a-c) annual, (d-f) spring, (g-i) summer, (j-l) autumn, (m-o) winter
![]() |
Tab.1 Average (1961-2010) pattern correlation coefficient (PCC) of annual and seasonal mean temperatures between model results (decadal and historical experiments of CanESM5 and MIROC6 models) and observations at lead years of 1-5
![]() |
Fig. 3 Anomaly correlation coefficient (ACC) of annual and seasonal mean temperature between observation and CanESM5 historical experiment (a-e) and decadal reforecast (f-j) at lead years 5-9 (Spotted area denotes passing significant test at 0.1 level) (a, f) annual, (b, g) spring, (c, h) summer, (d, i) autumn, (e, j) winter
Fig. 4 Root mean square error (RMSE) of annual and seasonal mean temperature between observation and MIROC6 historical experiment (a-e) and decadal reforecast (f-j) at lead years 5-9 (a, f) annual, (b, g) spring, (c, h) summer, (d, i) autumn, (e, j) winter
Fig. 5 ACC between annual mean temperature of observation and that of CanESM5 reforecast at lead years (a) 1-5, (b) 2-6, (c) 3-7,(d) 4-8, (e) 5-9, (f) 6-10 (Spotted area denotes passing significant test at 0.01 confident level)
Fig. 7 ACC between observation temperature and average temperature of two models’ reforecasts in various regions of China (Black chain lines represent thresholds at 0.1 significance level) (a) annual, (b) spring, (c) summer, (d) autumn, (e) winter
[1] | Alexander L V, Uotila P, Nicholls N. Influence of sea surface temperature variability on global temperature and precipitation extremes[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D18116 |
[2] | Wu Z W, Jiang Z H, Li J P, et al. Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency[J]. Climate Dynamics, 2012, 39(9-10):2393-2402 |
[3] | Zhou Y F, Wu Z W. Possible impacts of mega-El Niño/Southern Oscillation and Atlantic Multidecadal Oscillation on Eurasian heatwave frequency variability[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(697):1647-1661 |
[4] | Chen W, Dong B W. Anthropogenic impacts on recent decadal change in temperature extremes over China: relative roles of greenhouse gases and anthropogenic aerosols[J]. Climate Dynamics, 2019, 52(5-6):3643-3660 |
[5] | Chen H P, Sun J Q, Fan K. Decadal features of heavy rainfall events in eastern China[J]. Acta Meteorologica Sinica, 2012, 26(3):289-303 |
[6] | Hanlon H M, Hegerl G C, Tett S F B, et al. Can a decadal forecasting system predict temperature extreme indices?[J]. Journal of Climate, 2013, 26(11):3728-3744 |
[7] | Liu Y L, Donat M G, Rust H W, et al. Decadal predictability of temperature and precipitation means and extremes in a perfect-model experiment[J]. Climate Dynamics, 2019, 54(7-8):3711-3729 |
[8] | Meehl G A, Goddard L, Murphy J, et al. Decadal prediction: can it be skillful?[J]. Bulletin of the American Meteorological Society, 2009, 90(10):1467-1485 |
[9] | Meehl G A, Goddard L, Boer G, et al. Decadal climate prediction: an update from the trenches[J]. Bulletin of the American Meteorological Society, 2014, 95(2):243-267 |
[10] | Palmer T N, Doblas-Reyes F J, Weisheimer A, et al. Toward seamless prediction: calibration of climate change projections using seasonal forecasts[J]. Bulletin of the American Meteorological Society, 2008, 89(4):459-470 |
[11] | Hurrell J, Meehl G A, Bader D, et al. A unified modeling approach to climate system prediction[J]. Bulletin of the American Meteorological Society, 2009, 90(20):1819-1832 |
[12] | Vera C, Barange M, Dube O, et al. Needs assessment for climate information on decadal timescales and longer[J]. Procedia Environmental Sciences, 2010, 1: 275-286 |
[13] | Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4):485-498 |
[14] | Veronika E, Sandrine B, Gerald A M, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development Discussions, 2015, 8(12):10539-10583 |
[15] | Boer G J, Smith D M, Cassou C, et al. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6[J]. Geoscientific Model Development, 2016, 9(10):3751-3777 |
[16] | 周天军, 吴波. 年代际气候预测问题: 科学前言与挑战[J]. 地球科学进展, 2017, 32(4):331-341. |
Zhou T J, Wu B. Decadal climate prediction: scientific frontier and challenge[J]. Advances in Earth Science, 2017, 32(4):331-341 (in Chinese) | |
[17] | 吴波, 辛晓歌. CMIP6年代际气候预测计划(DCPP)概况与评述[J]. 气候变化研究进展, 2019, 15(5):476-480. |
Wu B, Xin X G. Short commentary on CMIP6 Decadal Climate Prediction Project (DCPP)[J]. Climate Change Research, 2019, 15(5):476-480 (in Chinese) | |
[18] | Marotzke J, Müller W A, Vamborg F S E, et al. MiKlip: a national research project on decadal climate prediction[J]. Bulletin of the American Meteorological Society, 2016, 97(12):2379-2394 |
[19] | Xin X G, Gao F, Wei M, et al. Decadal prediction skill of BCC-CSM1.1 climate model in East Asia[J]. International Journal of Climatology, 2018, 38(2):584-592 |
[20] | Xin X G, Wei M, Li Q Q, et al. Decadal prediction skill of BCC-CSM1.1 with different initialization strategies[J]. Journal of the Meteorological Society of Japan, 2019, 97(3):1-12 |
[21] | Wei M, Li Q Q, Xin X G, et al. Improved decadal climate prediction in the North Atlantic using EnOI-assimilated initial condition[J]. Science Bulletin, 2017, 62(16):1142-1147 |
[22] | Kushnir Y, Scaife A A, Arritt R, et al. Towards operational predictions of the near-term climate[J]. Nature Climate Change, 2019, 9(2):94-101 |
[23] | 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4):396-408. |
Han Z Y, Wu B, Xin X G. Decadal prediction skill of the global sea surface temperature in the BCC_CSM1.1 climate model[J]. Advances in Earth Science, 2017, 32(4):396-408 (in Chinese) | |
[24] | 容新尧, 刘征宇, 段晚锁, 等. 耦合模式中北太平洋和北大西洋海表面温度年代际可预报性和预报技巧的季节依赖性[J]. 地球科学进展, 2017, 32(4):382-395. |
Rong X Y, Liu Z Y, Duan W S, et al. Seasonal dependence of the North Pacific and North Atlantic SST predictability and forecast skill[J]. Advances in Earth Science, 2017, 32(4):382-395 (in Chinese) | |
[25] | Cassou C, Kushnir Y, Hawkins E, et al. Decadal climate variability and predictability: challenges and opportunities[J]. Bulletin of the American Meteorological Society, 2018, 99(3):479-490 |
[26] | 高峰, 辛晓歌, 吴统文, 等. BCC_CSM1.1对10年尺度全球及区域温度的预测研究[J]. 大气科学, 2012, 36(6):1165-1179. |
Gao F, Xin X G, Wu T W, et al. A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1.1 model[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(6):1165-1179 (in Chinese) | |
[27] |
Doblas-Reyes F J, Andreu-Burillo I, Chikamoto Y, et al. Initialized near-term regional climate change prediction[J]. Nature Communications, 2013, 4: 1715
URL pmid: 23591882 |
[28] | Smith D M, Scaife A A, Boer G J, et al. Real-time multi-model decadal climate predictions[J]. Climate Dynamics, 2013, 41(11-12):2875-2888 |
[29] | Wu B, Zhou T J, Li C, et al. Improved decadal prediction of Northern-Hemisphere summer land temperature[J]. Climate Dynamics, 2019, 53(3-4):1357-1369 |
[30] | Taylor A L, Dessai S, de Bruin, et al. Communicating uncertainty in seasonal and interannual climate forecasts in Europe[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2055):20140454 |
[31] | Towler E, PaiMazumder D. Done J. Toward the application of decadal climate predictions[J]. Journal of Applied Meteorology and Climatology, 2018, 57(3):555-568 |
[32] | 魏麟骁, 辛晓歌, 程炳岩, 等. BCC_CSM1.1气候模式年代际试验对中国气候的回报能力评估[J]. 气候变化研究进展, 2016, 12(4):294-302. |
Wei L X, Xin X G, Chen B Y, et al. Hindcast of China climate with decadal experiment by BCC-CSM1.1 climate model[J]. Climate Change Research, 2016, 12(4):294-302 (in Chinese) | |
[33] | 周鑫, 李清泉, 孙秀博, 等. BCC_CSM1.1模式对我国气温的模拟和预估[J]. 应用气象学报, 2014, 25(1):95-106. |
Zhou X, Li Q Q, Sun X B, et al. Simulation and projection of temperature in China with BCC_CSM1.1 model[J]. Journal of Applied Meteorological Science, 2014, 25(1):95-106 (in Chinese) | |
[34] | Swart N C, Cole J N S, Kharin V V, et al. The Canadian Earth System Model version 5 (CanESM5.0.3)[J]. Geoscientific Model Development, 2019, 12(11):4823-4873 |
[35] | Verseghy D L. The Canadian land surface scheme (CLASS): its history and future[J]. Atmosphere-Ocean, 2000, 38(1):1-13 |
[36] | Arora V K. Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models[J]. Agricultural and Forest Meteorology, 2003, 118(1-2):21-47 |
[37] | Bouillon S, Morales M, Miguel A, et al. An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids[J]. Ocean Modelling, 2009, 27(3):174-184 |
[38] | Numaguti A, Takahashi M, Nakajima T, et al. Description of CCSR/NIES atmospheric general circulation model[J]. Center for Global Environmental Research Supercomputer Monograph Report, 1997, 3: 1-48 |
[39] | Takata K, Emori S, Watanabe T. Development of the Minimal Advanced Treatments of Surface Interraction and RunOff (MATSIRO)[J]. Global and Planetary Change, 2003, 38(1):209-222 |
[40] | Oki T, Sud Y C. Design of Total Runoff Integrating Pathways (TRIP): a global river channel network[J]. Earth Interactions, 1998, 2(1):1-37 |
[41] | Hasumi H. CCSR Ocean Component Model (COCO) version 4.0 [R]. Tokyo: Center for Climate System Research Report, 2006: 103 |
[42] | Tatebe H, Ogura T, Nitta T, et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6[J]. Geoscientific Model Development, 2019, 12(7):2727-2765 |
[43] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学, 2013, 56(4):1102-1111. |
Wu J, Gao X J. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4):1102-1111 (in Chinese) | |
[44] | CMIP-WGCM-WGSIP Decadal Climate Prediction Panel. Data and bias correction for decadal clim-ate predictions [R/OL]. 2011 [2019-11-27]. https://www.wcrp-climate.org/decadal/references/DCPP_Bias_Correction.pdf |
[45] | Magnusson L, Alonso-Balmaseda M, Corti S, et al. Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors[J]. Climate Dynamics, 2013, 41(9-10):2393-2409 |
[46] | Saha S, Nadiga S, Thiaw C, et al. The NCEP climate forecast system[J]. Journal of Climate, 2006, 19(15):3483-3517 |
[47] | Goddard L, Kumar A, Solomon A, et al. A verification framework for interannual-to-decadal predictions experiments[J]. Climate Dynamics, 2013, 40(1-2):245-272 |
[48] | 何慧根, 李巧萍, 吴统文, 等. 月动力延伸预测模式业务系统DERF2.0对中国气温和降水的预测性能评估[J]. 大气科学, 2014, 38(5):950-964. |
He H G, Li Q P, Wu T W, et al. Temperature and precipitation evaluation of monthly dynamic extended range forecast operational system DERF2.0 in China[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5):950-964 (in Chinese) | |
[49] | Yu E T, Sun J Q, Chen H P, et al. Evaluation of a high-resolution historical simulation over China: climatology and extremes[J]. Climate Dynamics, 2015, 45(7):2013-2031 |
[1] | CHEN Deliang, TAN Xian-Chun, PENG Zhe, YAN Hong-Shuo, CHENG Yong-Long. Opportunities and challenges of artificial intelligence in climate research and services [J]. Climate Change Research, 2024, 20(6): 669-681. |
[2] | ZHOU Tian-Yi, JIANG Zhi-Hong, LI Wei, SUN Cen-Xiao. A comparative study of future summer precipitation projections in Northwest China under different physical constraint schemes [J]. Climate Change Research, 2024, 20(4): 403-415. |
[3] | CHENG Yang, HAN Zhen-Yu. Projection of the cluster high temperature events in China and population exposure under 1.5℃ and 2℃ global warming [J]. Climate Change Research, 2024, 20(3): 278-290. |
[4] | SUN Xiao-Ling, XIE Wen-Xin, ZHOU Bo-Tao. CMIP6 evaluation and projection of terrestrial ecosystem over Asia [J]. Climate Change Research, 2023, 19(1): 49-62. |
[5] | HAN Zhen-Yu, XU Ying, WU Jia, SHI Ying. Evaluation on the simulated runoff in China and future change projection based on multiple regional climate models [J]. Climate Change Research, 2022, 18(3): 305-318. |
[6] | ZHANG Xin-Ran, CHEN Hao-Ming. Assessment of warm season precipitation in the eastern slope of the Tibetan Plateau by CMIP6 models [J]. Climate Change Research, 2022, 18(2): 129-141. |
[7] | HUANG Lu-Feng, ZHU Zai-Chun, HUANG Meng-Tian, ZHAO Qian, MA Wei-Rui, ZENG Hui. Projection of gross primary productivity change of global terrestrial ecosystem in the 21st century based on optimal ensemble averaging of CMIP6 models [J]. Climate Change Research, 2021, 17(5): 514-524. |
[8] | CHENG Yang, ZHOU Bo-Tao, HAN Zhen-Yu, XU Ying. Evaluation of multi-RegCM4 dynamical downscaling simulations on cluster high temperature events in China [J]. Climate Change Research, 2020, 16(6): 657-666. |
[9] | XU Wen-Xin, CHEN Jie, GU Lei, ZHU Bi-Ying, ZHUAN Mei-Jia. Runoff response to 1.5℃ and 2.0℃ global warming for the Yangtze River basin [J]. Climate Change Research, 2020, 16(6): 690-705. |
[10] | LI Rou-Ke, HAN Zhen-Yu, XU Ying, SHI Ying, WU Jia. An ensemble projection of GDP and population exposure to high temperature events over Jing-Jin-Ji district based on high resolution combined dynamical and statistical downscaling datasets [J]. Climate Change Research, 2020, 16(4): 491-504. |
[11] | Qi-Mou ZHANG,Run WANG,Tong JIANG,Song-Sheng CHEN. Projection of extreme precipitation in the Hanjiang River basin under different RCP scenarios [J]. Climate Change Research, 2020, 16(3): 276-286. |
[12] | Duo-Ying JI,Qian ZHANG,Zhi-Cheng LUO,Yang-Xin CHEN. Short commentary on CMIP6 Carbon Dioxide Removal Model Intercomparison Project (CDRMIP) [J]. Climate Change Research, 2019, 15(5): 457-464. |
[13] | Li-Xia ZHANG,Xiao-Long CHEN,Xiao-Ge XIN. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP) [J]. Climate Change Research, 2019, 15(5): 519-525. |
[14] | Zhen-Ya SONG,Ying BAO,Fang-Li QIAO. Introduction of FIO-ESM v2.0 and its participation plan in CMIP6 experiments [J]. Climate Change Research, 2019, 15(5): 558-565. |
[15] | Cheng QIAN,Wen-Xia ZHANG. Short commentary on CMIP6 Detection and Attribution Model Intercomparison Project (DAMIP) [J]. Climate Change Research, 2019, 15(5): 469-475. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|