气候变化研究进展 ›› 2020, Vol. 16 ›› Issue (6): 690-705.doi: 10.12006/j.issn.1673-1719.2019.207
徐文馨1,2(), 陈杰1,2(), 顾磊1,2, 朱碧莹1,2, 专美佳1,2
收稿日期:
2019-09-09
修回日期:
2019-11-04
出版日期:
2020-11-30
发布日期:
2020-12-03
通讯作者:
陈杰
作者简介:
徐文馨,女,硕士研究生,基金资助:
XU Wen-Xin1,2(), CHEN Jie1,2(), GU Lei1,2, ZHU Bi-Ying1,2, ZHUAN Mei-Jia1,2
Received:
2019-09-09
Revised:
2019-11-04
Online:
2020-11-30
Published:
2020-12-03
Contact:
CHEN Jie
摘要:
全球变暖影响着以流域径流要素为主导的水文水资源系统的变化。长江流域未来水资源量的时空分布对长江大保护与长江经济带的发展意义重大。为探究全球升温1.5℃和2.0℃对长江流域径流变化的影响,使用基于偏差校正的气候模式集合数据驱动两参数月水量平衡模型,比较两种升温情景下径流量的响应差异。结果表明:基于偏差校正的气候模式集合数据可以较好地代表长江流域历史时期(1976—2005年)的年平均降水和年平均蒸散发情势。两参数月水量平衡模型与参数区域化方法相结合能较好地模拟长江流域各子流域的月径流量。升温1.5℃时,无论是年径流量还是季节径流量均呈上升趋势,与历史时期相比,50%以上三级子流域的增幅超过5%;升温2.0℃时,增幅超过8%。这表明升温2.0℃情景下长江流域水资源量将进一步增加。相对于历史时期,升温1.5℃与2.0℃情景下长江流域北部降水量增幅较大;径流量增幅分布格局基本与降水量一致。汉江流域是全流域径流量增幅最显著的区域。
徐文馨, 陈杰, 顾磊, 朱碧莹, 专美佳. 长江流域径流对全球升温1.5℃与2.0℃的响应[J]. 气候变化研究进展, 2020, 16(6): 690-705.
XU Wen-Xin, CHEN Jie, GU Lei, ZHU Bi-Ying, ZHUAN Mei-Jia. Runoff response to 1.5℃ and 2.0℃ global warming for the Yangtze River basin[J]. Climate Change Research, 2020, 16(6): 690-705.
图1 长江流域170个气象站点及45个三级子流域分布图
Fig. 1 Spatial distribution of 170 meteorological stations and 45 third-level water resources areas over the Yangtze River basin
图2 RCP4.5情景下CMIP5模式得到2006—2100年全球平均地表温度相对于基准期 (1986—2005年) 变化的时间序列
Fig. 2 Time series of annual (a) and 30-year annual mean (b) near-surface air temperature anomalies (relative to 1986-2005) from CMIP5 models averaged over the globe during 2006-2100 under RCP4.5
图3 长江流域年平均降水(a)和年潜在蒸散发(b)的泰勒图 注:图中字母A~M分别代表订正后13个气候模式,顺序与表1一致,字母N代表集合平均。
Fig. 3 Taylor diagrams of bias corrected outputs of 13 models in simulating annual precipitation (a) and potential evapotranspiration (b) in the Yangtze River basin (A-M, climate models, in the same order as Table 1; N, multi-model ensemble mean)
图4 1976—2005年长江流域平均年降水量和潜在蒸散发的空间分布
Fig. 4 Spatial patterns of annual mean precipitation(a, b) and calculated potential evapotranspiration (c, d) over the Yangtze River basin during 1976-2005 (a, c: observations; b, d: multi-model ensemble mean)
图5 长江流域1976—2005年平均降水和潜在蒸散发的IVS值
Fig. 5 The IVS of annual precipitation (left) and potential evapotranspiration (right) over the Yangtze River basin during 1976-2005 simulated by the models
图6 1976—2005年长江流域月降水和月潜在蒸散发分布
Fig. 6 The distribution of monthly precipitation (a) and potential evapotranspiration (b) over the Yangtze River basin during 1976-2005
图7 有资料流域月水量平衡模型率定期与验证期NSE
Fig. 7 Nash coefficients of two-parameter water balance model in calibration and validation period for monthly runoff simulation in 130 data available basins (a) the calibration period, (b) the validation period
图8 参证流域个数为1~10时不同空间相近法对应目标流域NSE (a)和长江流域20个有资料的三级子流域参数区域化前后NSE分布情况(b) 注:箱体上下分别表示NSE值的25%和75%分位数,箱体横线表示中位数,箱须表示5%和95%分位数。
Fig. 8 Nash coefficients of the target basins when the number of reference basins changes from 1 to 10 for different spatial proximity methods (a) and comparison of Nash coefficients of 20 data available basins over the Yangtze River basin between utilizing parameter regionalization or not (b) (The horizontal line in each box indicates the median, the boxes indicating interquartile model spread (25th and 75th), and the whiskers show the 5th and 95th inter quartile)
图10 长江流域未来年及季节降水量、潜在蒸散发量、径流量较历史时期的变幅 注:箱体上下分别表示差值的25%和75%分位数,箱体横线表示差值的中位数,箱须表示差值的5%和95%的分位数。
Fig. 10 Annual and seasonal precipitation, potential evapotranspiration and runoff changes over the Yangtze River basin under two warming scenarios compared to the reference period (The horizontal line in each box indicates the median, the boxes indicating interquartile model spread (25th and 75th), and the whiskers show the 5th and 95th inter-quartile)
图11 基于多模式集合平均预测的长江流域未来年降水、年潜在蒸散发及年径流量较历史时期变幅
Fig. 11 Annual precipitation, potential evapotranspiration and runoff changes over the Yangtze River basin under two warming scenarios compared to the reference period based on multi-model ensemble mean
图12 基于多模式集合平均预测的长江流域未来春季平均降水、潜在蒸散发及径流量较历史时期的变幅
Fig. 12 Spring precipitation, potential evapotranspiration and runoff changes over the Yangtze River basin under two warming scenarios compared to the reference period based on multi-model ensemble mean
图13 基于多模式集合平均预测的长江流域未来夏季平均降水、潜在蒸散发及径流量较历史时期的变幅
Fig. 13 Summer precipitation, potential evapotranspiration and runoff changes over the Yangtze River basin under two warming scenarios compared to the reference period based on multi-model ensemble mean
图14 基于多模式集合平均预测的长江流域未来秋、冬两季径流量较历史时期的变幅
Fig. 14 Autumn and winter runoff changes over the Yangtze River basin under two warming scenarios compared to the reference period based on multi-model ensemble mean
[1] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 |
[2] | 巢清尘, 张永香, 高翔, 等. 巴黎协定: 全球气候治理的新起点[J]. 气候变化研究进展, 2016,12(1):61-67. |
Chao Q C, Zhang Y X, Gao X, et al. Paris Agreement: a new start for global governance on climate[J]. Climate Change Research, 2016,12(1):61-67 (in Chinese) | |
[3] | IPCC. Climate change 2014: impacts, adaption, and vulnerability [M]. Cambridge: Cambridge University Press, 2014 |
[4] | 苏布达, 周建, 王艳君, 等. 全球升温1.5℃和2.0℃情景下中国实际蒸散发时空变化特征[J]. 中国农业气象, 2018,39(5):293-303. |
Su B D, Zhou J, Wang Y J, et al. Spatial and temporal variation of actualevapotranspiration in China under the 1.5℃and 2.0℃ global warming scenarios[J]. Chinese Journal of Agrometeorology, 2018,39(5):293-303 (in Chinese) | |
[5] | 王安乾, 苏布达, 王艳君, 等. 全球升温1.5℃与2.0℃情景下中国极端低温事件变化与耕地暴露度研究[J]. 气象学报, 2017,75(3):415-428. |
Wang A Q, Su B D, Wang Y J, et al. Variation of the extreme low-temperature events and farmland exposure under global warming of 1.5℃ and 2.0℃[J]. Acta Meteorological Sinica, 2017,75(3):415-428 (in Chinese) | |
[6] |
Su B D, Huang J L, Fischer T, et al. Drought losses in China might double between the 1.5℃and 2.0℃warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(42):10600-10605
doi: 10.1073/pnas.1802129115 URL pmid: 30275323 |
[7] | IPCC. Special report on global warming of 1.5℃ (SR15) [M]. Cambridge: Cambridge University Press, 2018: 785 |
[8] | WMO. Water resources and climate change: sensitivity of water resources systems to climate change and variability [R]. WMO/TO, 1987 |
[9] | 王国庆, 张建云, 刘九夫, 等. 气候变化对水文水资源影响研究综述[J]. 中国水利, 2008 (2):47-51. |
Wang G Q, Zhang J Y, Liu J F, et al. Review on studies for climate change impacting on hydrology and water resources[J]. China Water Resources, 2008 (2):47-51 (in Chinese) | |
[10] | 《气候变化国家评估报告》编委会. 气候变化国家评估报告[M]. 北京: 科学出版社, 2007. |
National Assessment Report of Climate Change Editorial Board. National assessment report of climate change [M]. Beijing: Science Press, 2007 (in Chinese) | |
[11] | 刘昌明, 刘小莽, 郑红星. 气候变化对水文水资源影响问题的探讨[J]. 科学对社会的影响, 2008 (2):21-27. |
Liu C M, Liu X M, Zheng H X, et al. Discussion about the impact of climate change on water resources[J]. Science and Society, 2008 (2):21-27 (in Chinese) | |
[12] | 郝莹, 马京津, 安晶晶, 等. 全球1.5℃和2.0℃升温下潮白河流域气候和径流量变化预估[J]. 气候变化研究进展, 2018,14(3):237-246. |
Hao Y, Ma J J, An J J, et al. Projected changes in climate and riverdischarge in the Chaobai River basin under 1.5℃ and 2.0℃ global warming[J]. Climate Change Research, 2018,14(3):237-246 (in Chinese) | |
[13] | 王胜, 许红梅, 刘绿柳, 等. 全球增温1.5℃和2.0℃对淮河中上游径流影响预估[J]. 自然资源学报, 2018,33(11):1966-1978. |
Wang S, Xu H M, Liu L L, et al. Projection of the impacts of global warming of 1.5℃and 2.0℃ on runoff in the upper-middle reaches of Huaihe River basin[J]. Journal of Natural Resources, 2018,33(11):1966-1978 (in Chinese) | |
[14] | Sharma D, Das G A, Babel M S. Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River basin, Thailand[J]. Hydrology and Earth System Sciences Discussions, 2007,11(4):1373-1390 |
[15] | Xu C Y. From GCMs to river flow: a review of downscale methods and hydrologic modelling approaches[J]. Progress in Physical Geography, 1999,23(2):229-249 |
[16] |
Su B D, Huang J L, Zeng X F, et al. Impacts of climate change on streamflow in the upper Yangtze River basin[J]. Climatic Change, 2017,141(3):533-546
doi: 10.1007/s10584-016-1852-5 URL |
[17] | 鞠琴, 郝振纯, 余钟波, 等. IPCC AR4气候情景下长江流域径流预测[J]. 水科学进展, 2011,22(4):462-469. |
Ju Q, Hao Z C, Yu Z B, et al. Runoff prediction in the Yangtze River basin based on IPCC AR4 climate change scenarios[J]. Advances in Water Science, 2011,22(4):462-469 (in Chinese) | |
[18] | 韩会庆, 张娇艳, 陈梦玲, 等. RCPs情景下贵州省干旱趋势分析[J]. 水利水电技术, 2018,49(10):1-7. |
Han H Q, Zhang J Y, Chen M L, et al. Drought trend analysis under RCPs scenarios in Guizhou province[J]. Water Resources and Hydropower Engineering, 2018,49(10):1-7 (in Chinese) | |
[19] | Li H, Sheffield J, Wood E F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching[J]. Journal of Geophysical Research Atmospheres, 2010,115(1):985-993 |
[20] |
陶辉, 黄金龙, 翟建青, 等. 长江流域气候变化高分辨率模拟与RCP4.5情景下的预估[J]. 气候变化研究进展, 2013,9(4):246-251.
doi: 10.3969/j.issn.1673-1719.2013.04.002 URL |
Tao H, Huang J L, Zhai J Q, et al. Simulation and projection of climate changes under the RCP4.5 scenario in the Yangtze River basin based on CCLM[J]. Climate Change Research, 2013,9(4):246-251 (in Chinese) | |
[21] | 刘鸣彦, 孙凤华, 侯依玲, 等. 基于HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019,34(6):650-659. |
Liu M Y, Sun F H, Hou Y L, et al. Runoff change in Taizihe River basin under future climate change based on HBV model[J]. Advances in Earth Science, 2019,34(6):650-659 (in Chinese) | |
[22] | 曹丽娟, 董文杰, 张勇, 等. 未来气候变化对黄河流域水文过程的影响[J]. 气候与环境研究, 2013,18(6):746-756. |
Cao L J, Dong W J, Zhang Y, et al. Impacts of climate change on hydrological processes over the Yellow River basin[J]. Climatic and Environmental Research, 2013,18(6):746-756 (in Chinese) | |
[23] | 阮甜, 查芊郁, 杨茹, 等. 全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响[J]. 长江流域资源与环境, 2019,28(2):407-415. |
Ruan T, Zha Q Y, Yang R, et al. Effects on runoff above the Cuntan station area in the Yangtze River basin under the 1.5℃ and 2.0℃ global warming[J]. Resources and Environment in the Yangtze Basin, 2019,28(2):407-415 (in Chinese) | |
[24] | 郭静, 王宁, 粟晓玲. 气候变化下石羊河流域上游产流区的径流响应研究[J]. 西北农林科技大学学报: 自然科学版, 2016,44(12):211-218. |
Guo J, Wang N, Su X L, et al. Response of runoff to climate change in upstream generation area of Shiyang River basin[J]. Journal of Northwest A&F University: Natural Science Edition, 2016,44(12):211-218 (in Chinese) | |
[25] | 降亚楠, 王蕾, 魏晓妹, 等. 基于SWAT模型的气候变化对泾河径流量的影响[J]. 农业机械学报, 2017,48(2):262-270. |
Jiang Y N, Wang L, Wei X M, et al. Impacts of climate change on runoff of Jinghe River based on SWAT model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(2):262-270 (in Chinese) | |
[26] | 郑巍斐, 杨肖丽, 程雪蓉, 等. 基于CMIP5和VIC模型的长江上游主要水文过程变化趋势预测[J]. 水文, 2018,38(6):48-53. |
Zheng W F, Yang X L, Cheng X R, et al. Prediction of major water cycle change on upper Yangtze River based on CMIP5 and VIC model[J]. Journal of China Hydrology, 2018,38(6):48-53 (in Chinese) | |
[27] |
Chen J, Brissette F P, Leconte R. Coupling statistical and dynamical methods for spatial downscaling of precipitation[J]. Climatic Change, 2012,114(3-4):509-526
doi: 10.1007/s10584-012-0452-2 URL |
[28] |
Chen J, Brissette F P, Leconte R. Assessing regression-based statistical approaches for downscaling precipitation over North America[J]. Hydrological Processes, 2014,28(9):3482-3504
doi: 10.1002/hyp.9889 URL |
[29] |
Muerth M J, St-Denis B G, Ricard S, et al. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff[J]. Hydrology and Earth System Sciences, 2013,17(3):1189-1204
doi: 10.5194/hess-17-1189-2013 URL |
[30] | Teutschbein C, Seibert J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods[J]. Journal of Hydrology, 2012,456:12-29 |
[31] | 詹万志, 王顺久, 岑思弦. 未来气候变化情景下长江上游年径流量变化趋势研究[J]. 高原山地气象研究, 2017,37(4):34-39. |
Zhan W Z, Wang S J, Cen S X, et al. Trends variability of annual runoff in the upper reaches of Yangtze River under future climate change scenarios[J]. Plateau and Mountain Meteorology Research, 2017,37(4):34-39 (in Chinese) | |
[32] | 徐宗学, 程磊. 分布式水文模型研究与应用进展[J]. 水利学报, 2010,41(9):1009-1017. |
Xu Z X, Cheng L. Progress on studies and applications of the Distributed Hydrological Models[J]. Journal of Hydraulic Engineering, 2010,41(9):1009-1017 (in Chinese) | |
[33] |
Taylor K E, Stoufer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012,93:485-498
doi: 10.1175/BAMS-D-11-00094.1 URL |
[34] | Lu G Y, Wong D W. An adaptive inverse-distance weighting spatial interpolation technique[J]. Computers & Geosciences, 2008,34(9):1044-1055 |
[35] |
Chen J, Brissette F P, Chaumont D, et al. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins[J]. Journal of Hydrology, 2013,479(5):200-214
doi: 10.1016/j.jhydrol.2012.11.062 URL |
[36] |
Gu Lei, Chen J, Xu C Y, et al. The contribution of internal climate variability to climate change impacts on droughts[J]. The Science of the Total Environment, 2019,684:229-246
doi: 10.1016/j.scitotenv.2019.05.345 URL pmid: 31153070 |
[37] |
Chen J, Brissette F P, Zhang X J, et al. Bias correcting climate model multi-member ensembles to assess climate change impacts on hydrology[J]. Climatic Change, 2019,153:361-377
doi: 10.1007/s10584-019-02393-x URL |
[38] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research, 2001,106(D7):7183-7192
doi: 10.1029/2000JD900719 URL |
[39] |
Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998,79(1):61-78
doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 URL |
[40] | 熊立华, 郭生练, 付小平, 等. 两参数月水量平衡模型的研制和应用[J]. 水科学进展, 1996 (S1):80-86. |
Xiong L H, Guo S L, Fu X P, et al. Two-parameter monthly water balance model and its application[J]. Advances in Water Science, 1996 (S1):80-86 (in Chinese) | |
[41] | Allen R G, Pereira L S, Raes D, et al. Crop potential evapotranspiration guidelines for computing crop water requirements[M]. Rome: FAO, 1998 |
[42] |
Ventura F, Spano D, Duce P, et al. An evaluation of common potential evapotranspiration equations[J]. Irrigation Science, 1999,18(4):163-170
doi: 10.1007/s002710050058 URL |
[43] | 谢平, 陈广才, 夏军. 变化环境下非一致性年径流序列的水文频率计算原理[J]. 武汉大学学报: 工学版, 2005 (6):6-9, 15. |
Xie P, Chen G C, Xia J, et al. Hydrological frequency calculation principle of inconsistent annual runoff series under changing environments[J]. Engineering Journal of Wuhan University, 2005 (6):6-9, 15 (in Chinese) | |
[44] |
Nash J E, Sutcliffe J V. Review flow forecasting through conceptual models (Part 1): a discussion of principles[J]. Journal of Hydrology, 1970,10(3):282-290
doi: 10.1016/0022-1694(70)90255-6 URL |
[45] | 毛能君, 夏军, 张利平, 等. 参数区域化在乏资料地区水文预报中应用研究综述[J]. 中国农村水利水电, 2016 (12):88-92. |
Mao N J, Xia J, Zhang L P, et al. An overview of hydrological model parameter regionalization for ungauged catchments[J]. China Rural Water and Hydropower, 2016 (12):88-92 (in Chinese) | |
[46] | Bao Z, Zhang J, Liu J, et al. Comparison of regionalization approaches based on regression and similarity for predictions in ungauged catchments under multiple hydro-climatic conditions[J]. Journal of Hydrology, 2012 (466):37-46 |
[47] | 叶加俊, 卢健涛, 银星黎, 等. 基于SDSM-SWAT模型的汉江上游径流变化模拟[J]. 水电能源科学, 2019,37(4):1-4, 12. |
Ye J J, Lu J T, Yin X L, et al. Simulation of runoff change in the upper reaches of the Hanjiang River based on SDSM-SWAT model[J]. Water Resources and Power, 2019,37(4):1-4, 12 (in Chinese) | |
[48] | 袁飞, 孙长林, 任立良, 等. 未来气候变化对汉江流域径流的可能影响[C]. 第八届中国水论坛论文集, 2010: 459-464. |
Yuan F, Sun C L, Ren L L, et al. The possible impact of future climate change on runoff in the Hanjiang River basin[C]. The Eighth China Water Forum, 2010: 459-464 (in Chinese) | |
[49] | 郭生练, 郭家力, 侯雨坤, 等. 基于Budyko假设预测长江流域未来径流量变化[J]. 水科学进展, 2015,26(2):151-160. |
Guo S L, Guo J L, Hou Y K, et al. Prediction of future runoff change based on Budyko hypojournal in Yangtze River basin[J]. Advances in Water Science, 2015,26(2):151-160 (in Chinese) | |
[50] |
Chen J, Gao C, Zeng X, et al. Assessing changes of river discharge under global warming of 1.5℃ and 2℃ in the upper reaches of the Yangtze River basin: approach by using multiple-GCMs and hydrological models[J]. Quaternary International, 2017,453:63-73
doi: 10.1016/j.quaint.2017.01.017 URL |
[1] | 丁凯熙, 张利平, 佘敦先, 张琴, 向竣文. 全球升温1.5℃和2.0℃情景下澜沧江流域极端降水的变化特征[J]. 气候变化研究进展, 2020, 16(4): 466-479. |
[2] | 张奇谋,王润,姜彤,陈松生. RCPs情景下汉江流域未来极端降水的模拟与预估[J]. 气候变化研究进展, 2020, 16(3): 276-286. |
[3] | 查芊郁,高超,杨茹,刘悦,阮甜,李鹏. 全球升温1.5℃和2.0℃情景下淮河上游干流径流量研究[J]. 气候变化研究进展, 2018, 14(6): 583-592. |
[4] | 郝莹,马京津,安晶晶,王元,许红梅. 全球1.5℃和2.0℃升温下潮白河流域气候和径流量变化预估[J]. 气候变化研究进展, 2018, 14(3): 237-246. |
[5] | 徐影 周波涛 吴婕 韩振宇 张永香 吴佳. 1.5~4℃升温阈值下亚洲地区气候变化预估[J]. 气候变化研究进展, 2017, 13(4): 306-315. |
[6] | 王艳君 景丞 曹丽格 姜彤 孙赫敏 黄金龙 翟建青 陶辉 高超 苏布达. 全球升温控制在1.5℃和2.0℃时中国分省人口格局[J]. 气候变化研究进展, 2017, 13(4): 327-336. |
[7] | 张艳武, 张莉, 徐影. CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016, 12(1): 10-19. |
[8] | 陈晓晨, 徐影, 许崇海, 姚遥. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014, 10(3): 217-225. |
[9] | 陶辉 黄金龙 翟建青 赖锡军. 长江流域气候变化高分辨率模拟与RCP4.5情景下的预估[J]. 气候变化研究进展, 2013, 9(4): 246-251. |
[10] | 王艳君 刘波 翟建青 苏布达 罗勇 张增信. 长江流域潜在蒸发量和实际蒸发量的关系[J]. 气候变化研究进展, 2011, 7(6): 393-399. |
[11] | 曾小凡 周建中 翟建青 苏布达 熊明. 2011—2050年长江流域气候变化预估问题的探讨[J]. 气候变化研究进展, 2011, 7(2): 116-122. |
[12] | 张勇;张强ncc;叶殿秀;陈鲜艳;尚赞娣. 1951-2006年黄河和长江流域雨涝变化分析[J]. 气候变化研究进展, 2009, 5(04): 226-230. |
[13] | 张天宇;王勇;程炳岩;唐红玉;刘晓冉;向波. 21世纪重庆最大连续5d降水的预估分析[J]. 气候变化研究进展, 2009, 5(03): 139-144. |
[14] | 刘波 姜彤 任国玉 Klaus Fraedrich. 2050年前长江流域地表水资源变化趋势[J]. 气候变化研究进展, 2008, 4(003): 145-150. |
[15] | 张增信 Klaus Fraedrich 姜彤 张金池. 2050年前长江流域极端降水预估[J]. 气候变化研究进展, 2007, 03(06): 340-344. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|