气候变化研究进展, 2025, 21(6): 830-838 doi: 10.12006/j.issn.1673-1719.2025.043

气候变化适应

中国近海光伏发电潜力预估及驱动因子分析

曾颖婷,1, 唐振飞2, 吴滨2, 周明珠1

1 福建省气象服务中心,福州 350007

2 福建省气候中心,福州 350007

Estimation of China’s offshore photovoltaic power generation potential and analysis of driving factors

ZENG Ying-Ting,1, TANG Zhen-Fei2, WU Bin2, ZHOU Ming-Zhu1

1 Fujian Meteorological Service Center, Fuzhou 350007, China

2 Fujian Climate Center, Fuzhou 350007, China

收稿日期: 2025-02-28   修回日期: 2025-04-28  

基金资助: 福建省自然科学基金项目(2023J011336)
华东区域气象科技协同创新基金项目(QYHZ202311)

Received: 2025-02-28   Revised: 2025-04-28  

作者简介 About authors

曾颖婷,女,高级工程师,113236039@qq.com

摘要

基于CMIP6资料,在SSP1-2.6和SSP5-8.5两种典型情景下,预估了近未来(2021—2060年)和远未来(2061—2100年)中国近海的光伏发电潜力相较于历史时期(1975—2014年)的变化,并分析了气候变化对未来光伏发电的潜在影响。结果表明,近未来时期,两种情景下的光伏发电潜力都呈现出在研究区北部增长、南部减少的趋势。SSP1-2.6情景下的光伏发电效率(PVP)最大增幅预估将超3%,约是SSP5-8.5情景下的1.8倍。远未来时期,SSP1-2.6情景下PVP转变为几乎整个研究区域都呈现出增长态势。从月变化来看,SSP1-2.6情景下近未来和远未来的全年PVP都将增加,最大增幅均出现在2月,分别为2.18%和4.20%。SSP5-8.5情景下两个时期PVP都在6—9月呈现出负变化,8月减少最明显。地表向下短波辐射(RSDS)对PVP变化的影响大于气温,是驱动PVP变化的主要原因。研究结果将为海上太阳能开发利用及能源规划管理提供重要参考。

关键词: 气候变化; 中国近海; 光伏发电; 发电潜力

Abstract

Based on the CMIP6 dataset, the changes in China’s offshore photovoltaic power potential (PVP) were projected in the near-future (2021-2060) and far-future (2061-2100) compared to the historical period (1975-2014) under two typical scenarios, SSP1-2.6 and SSP5-8.5, and the potential impacts of climate change on future PVP were analyzed. The results are as followed. In the near-future period, the PVP potential under both scenarios shows a pattern of increasing in the northern part of the study area and decreasing in the southern part. The maximum increase in PVP under the SSP1-2.6 scenario is projected to increase by more than 3%, which is about 1.8 times higher than that under the SSP5-8.5 scenario. In the far-future period, the PVP shows an increase in almost the entire study area under the SSP1-2.6 scenario. In terms of monthly changes, PVP will increase throughout the year under the SSP1-2.6 scenario for both the near- and far- future, with the largest increases occurring in February 2.18% and 4.20%, respectively. Under the SSP5-8.5 scenario, both periods show negative changes in PVP from June to September, with the most significant decrease in August. The effect of surface downwelling shortwave radiation on PVP changes is greater than that of temperature and is the main cause of PVP changes. The results of the study provide an important reference for offshore solar energy development and utilization as well as energy planning and management.

Keywords: Climate change; Offshore China; Photovoltaic power generation; Power generation potential

PDF (3943KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

曾颖婷, 唐振飞, 吴滨, 周明珠. 中国近海光伏发电潜力预估及驱动因子分析[J]. 气候变化研究进展, 2025, 21(6): 830-838 doi:10.12006/j.issn.1673-1719.2025.043

ZENG Ying-Ting, TANG Zhen-Fei, WU Bin, ZHOU Ming-Zhu. Estimation of China’s offshore photovoltaic power generation potential and analysis of driving factors[J]. Advances in Climate Change Research, 2025, 21(6): 830-838 doi:10.12006/j.issn.1673-1719.2025.043

引言

自工业化时期以来,由于使用化石燃料等产生了大量温室气体持续排放,全球平均温度上升了约1.1℃[1]。在此背景下,由于可再生能源能减少全球碳排放,有效减缓气候变化[2-4],被视为实现联合国可持续发展目标的关键。已有研究显示,中国近海太阳能资源年总量约为14×109 GW∙h[5],海上太阳能资源丰富,且具有巨大的开发利用价值。因此,开发利用海洋太阳能已成为近年来中国能源行业的重点发展方向,这对能源结构优化与应对气候变化具有重要意义[6-9]

光伏系统作为从太阳能资源中获取大规模电力的主要系统,在促进气候变化适应、保障能源安全等方面具有积极作用[10-12]。然而,光伏发电对未来天气变化的敏感性构成了其发展过程中的一个不确定性因素。由于太阳能资源属于气候资源,气候变化将会对太阳能资源产生重大影响[13-14],进而影响光伏发电效率(PVP)。光伏发电量取决于下行短波辐照度,而它又受到气溶胶及云量的影响[15-16]。此外,PVP还与空气温度和地面风速紧密相关[14,17-18],较冷的环境条件通常有助于提升光伏电池的性能表现,反之,较热的条件会使其性能降低;而气流(地面风速)通常能够对光伏发电模块起到冷却作用。气候变化不仅可能会引发未来的能源需求总量的增加,也会通过辐射、温度等要素变化使光伏能源产量的预测复杂化。已有许多学者针对气候变化对光伏产量的影响开展研究,Wild等[12]使用国际耦合模式比较计划第5阶段(CMIP5)的资料预测了RCP8.5情景下未来辐射可能发生的变化及其对光伏系统全球能源生产的影响。他们发现,全球大部分地区的光伏发电量每年减少1%,但欧洲大部分地区、北美东南部和中国东南部光伏发电量呈增加趋势。Yang等[19]预估了2006—2049年中国地表太阳辐射、地表温度和云量的潜在变化及其对光伏发电的影响。结果表明,与2006—2015年平均光伏发电量相比,中国西部地区光伏发电量每年将减少0.04%,而东南部地区光伏发电量每年将增加0.06%~0.10%。然而,以往研究大多针对全球或区域的陆地太阳能资源开展分析,缺乏对中国近海光伏发电潜力未来变化的系统性预估研究,且通常都是在高排放情景下进行预估,对低排放情景下的光伏能源变化的研究尚不多见。近海光伏发电作为低碳密集型能源,全生命周期碳排放强度仅为煤电的1/40,可显著推动沿海省份能源结构低碳化,填补沿海经济带的高能耗缺口,使其减少对“西电东送”的依赖。随着技术的发展,通过依托海上新能源离网制氢等方式,将光资源就地转化为清洁燃料,可有效解决深远海可再生能源的消纳难题,成为保障国家能源安全的战略性抓手。

文中利用CMIP6的气候模式资料,对比高排放情景(SSP5-8.5)和低排放情景(SSP1-2.6)下中国近海光伏发电潜力的未来变化。同时,进一步探究影响其变化的大气驱动因子,以期为海上太阳能开发利用、能源规划管理、推动“双碳”目标实现提供科学参考。

1 资料和方法

1.1 ERA5再分析参考数据集

以ERA5再分析资料作为参考数据集,评估相关变量的模式模拟结果与ERA5的一致性。ERA5资料是欧洲中期天气预报中心(ECMWF)2019年制作的最新一代大气再分析资料,现已被广泛应用于气候变化和模拟评估研究中,其在中国海区的适用性已得到证实[5]。本文使用的ERA5数据为1975—2014年间的月平均数据,空间分辨率为1°×1°。

1.2 CMIP6模式数据集

选取CMIP6中9个在中国区域模拟效果较好的全球气候模式[20]来评估气候变化对中国近海未来太阳能光伏发电潜力的影响,各模式的基本情况见表1。使用的主要变量包括近地表气温、地表向下短波辐射和近地面风速的月平均数据。考虑到各模式分辨率不同,为便于对模式进行集合平均,将所有模式数据采用双线性插值法统一插值到与参考数据集分辨率(1°×1°)相同的经纬度网格上。

表1   本研究选取的9个全球气候模式的基本信息

Table 1  Basic information of the 9 global climate models

新窗口打开| 下载CSV


文中未来的光伏发电潜力是在SSP1-2.6和SSP5-8.5两种具有代表性的情景下估计的,SSP1-2.6情景下全球升温将低于2℃,辐射强迫在2100年稳定在约2.6 W/m2,是相对严格的气候目标路径[21]。根据SSP情景的设计,SSP1-2.6情景可以在21世纪中叶达到碳中和[22-24]。SSP5-8.5是对CMIP5中RCP8.5情景的更新,代表的是2100年人为辐射强迫达到8.5 W/m2的高排放共享社会经济路径;在SSP5-8.5情景中,其化石燃料使用、能源消耗、粮食需求和温室气体排放均处于上限[22],是最灾难性的气候变化情景,能够为研究未来气候变化影响以及评估适应性和减缓措施提供参考[25]。文中以每40年作为一个研究时段,对两种典型路径下历史时期(1975—2014年)和未来时期(2021—2100年)进行计算,评估2021—2060年(近未来)和2061—2100年(远未来)两个时期由于不同的气候变化背景导致的光伏发电潜力的未来变化。

1.3 光伏发电潜力预估

使用Jerez等[14]和Mavromatakis等[26]提出的方法来估算PVP,其定义为光伏电池组件在实际环境条件下与在标准条件下的输出功率的百分比,具体表达式为

$ \operatorname{PVP}(t)=P_{R}(t) \frac{R(t)}{R_{\mathrm{STC}}} 。$

其中,RRSTC分别为实际环境条件下和标准测试条件下的短波辐射,RSTC=1000 W/m2PR为效率比,用于考虑光伏电池因温度变化而产生的效率变化,公式为

$P_{R}(t)=1+\gamma\left[T_{\text {cell }}(t)-T_{\mathrm{STC}}\right] 。$

其中,Tcell为电池温度,TSTC=25℃,对于单晶硅太阳能电池γ=-0.005℃-1。最后,考虑气温(T)、短波辐射(R)和风速(V)对电池温度的影响,Tcell计算公式为[27]

$T_{\mathrm{cell}}(t)=c_{1}+c_{2} T(t)+c_{3} R(t)+c_{4} V(t) \text { 。 }$

其中,c1=4.3℃,c2=0.943,c3=0.028 (℃∙m2)/W,c4=-1.528 (℃∙s)/m。

Tcell高于25℃或R低于1000 W/m2,则光伏输出功率会低于额定功率。

2 结果分析

2.1 模式模拟能力评估及订正

不同模式的预估结果往往会由于初始场不准确、计算误差及模式之间物理过程参数化的差异而导致很大不确定性。研究采用分位数映射(QM)方法[28]对CMIP6模式数据进行偏差订正,通过对研究区格点数据的系统校正,减小全球气候模式在区域尺度模拟中存在的偏差,提高其在区域气候模拟中的精度。泰勒图作为一种直观的评估工具,能够整合多项统计指标,全面且清晰地展示模式性能差异以及模拟值与观测值之间的误差大小[29]。为验证偏差订正效果,以ERA5再分析资料为参照基准,通过泰勒图对模式订正前后中国近海历史时期(1975—2014年)的辐射、气温、风速3个关键变量的模拟能力进行评估(图1),订正前气温的相关系数在0.81~0.98之间,标准差介于0.80~1.28之间;风速的相关系数在0.75~0.82之间,标准差在1.10~1.80之间;短波辐射的模拟效果较好,相关系数均在0.94~0.96之间,标准差在0.76~1.20之间。订正后,数据表现有明显改善,标准差都维持在1.0左右,气温的相关系数提升到0.86~0.99之间,风速的相关系数在0.85~0.87之间,辐射的相关系数提升至0.97以上。由此可见,经过QM偏差订正后,3个变量的模拟能力明显改进,匹配度大幅提升,订正后的结果用于未来情景预估更加合理。由于多模式集合平均(MME)可减少单一模式的不确定性和系统性偏差,提高气候预测的稳健性和数据的一致性,是消除不确定性的有效手段[30-31]。因此,采用多模式集合平均法对订正后的模式数据进行集合平均。

图1

图1   1975—2014年中国近海多年平均辐射、气温和风速的模拟场相对于观测场(ERA5)的泰勒图(a) QM偏差订正前,(b) QM偏差订正后

Fig. 1   Taylor diagrams of the simulated fields relative to the observed fields (ERA5) for the multi-year average radiation, temperature, and wind speed over the offshore China from 1975 to 2014. (a) Before QM bias correction, (b) after QM bias correction


2.2 未来PVP的变化

图2为SSP1-2.6和SSP5-8.5情景下,未来两个时期中国近海区域的PVP相对于历史时期(订正后的CMIP6集成数据集)的变化百分比空间分布。近未来时期,中国近海沿岸区域的PVP变化在两种路径下呈现出相似的空间格局,都大体表现为中北部地区增加、南部地区减少的趋势,只是在量级上有所不同。SSP1-2.6和SSP5-8.5情景下预估的PVP变化范围分别为-0.95%~3.37%和-1.31%~1.78%。SSP1-2.6的增幅范围更大且更明显,最大增幅出现在广东沿海海域,预估PVP增幅将超过3%,约是SSP5-8.5情景下的1.8倍;SSP5-8.5情景下增加的范围及幅度更小,且研究区南部呈现出减少趋势的区域相对更大。

图2

图2   SSP1-2.6和SSP5-8.5情景下近未来(a、b)和远未来(c、d)相对于历史时期的年平均光伏发电效率(PVP)的变化

Fig. 2   Changes in annual average photovoltaic power potential (PVP) in the near future (a, b) and far future (c, d) relative to the historical period under SSP1-2.6 and SSP5-8.5 scenarios. (Black dots indicate significance tests passed at the 0.05 level)


两种情景下远未来时期变化的空间分布形态与近未来相似,变化幅度都由沿岸海域向外围减小。SSP1-2.6和SSP5-8.5情景下预估的PVP变化范围分别为-0.44%~5.87%和-2.30%~4.77%。SSP1-2.6情景下增幅大值区位于沿岸海域以及黄海、东海区域,局部增幅超过5%。

对比未来的两个时期,在21世纪下半叶,变化趋势相较近未来时期更显著,部分格点的变化幅度达到近未来的两倍以上。SSP1-2.6情景下的远未来时期几乎整个研究区都呈显著上升趋势,PVP呈现减小的区域较近未来时期大幅缩小。SSP5-8.5情景下远未来时期PVP的变化幅度在正负方向上都有增强,研究区北部PVP增加更强烈,南部减弱也更明显。总体而言,碳中和路径下(SSP1-2.6情景下)的中国近海未来PVP较历史时期增加显著,特别在远未来时期,研究区几乎整体都表现为显著增加趋势。而SSP5-8.5情景下的PVP增幅较SSP1-2.6小,且南部地区的PVP显著减小。

图3为两种情景下中国近海区域近未来和远未来时期的PVP相对于历史时期的多年平均月变化。SSP1-2.6情景下,近未来和远未来的全年PVP都将增加,且最大增幅均出现在2月,分别为2.18%和4.20%;最小增幅分别出现在9月(0.16%)和8月(0.94%)。SSP5-8.5情景下,近未来的PVP在6—10月呈现出负变化,远未来在6—9月出现减少,其中8月减少最明显,分别为-0.88%(近未来)和-1.13%(远未来);近未来和远未来的最大增幅分别出现在2月(1.02%)和1月(2.61%)。

图3

图3   SSP1-2.6 (a)和SSP5-8.5 (b)情景下未来PVP相对于历史时期的多年平均月变化

Fig. 3   Monthly change in future PVP under the SSP1-2.6 (a) and SSP5-8.5 (b) scenarios relative to the multi-year average for the historical period


总体来看,相同情景下的PVP在未来两个时期的月变化基本一致,全年最大值出现在1—2月,最小值出现在8—9月。较近未来而言,远未来的变化幅度有所增加。特别是在SSP5-8.5情景下,夏季出现了负变化,并在远未来持续减小,说明该情景下未来夏季温度的增加对光伏发电系统产生的负面影响超过了短波辐射增长所带来的正面影响。

2.3 PVP变化的驱动因子

PVP的变化是由地表向下短波辐射、气温和风速变化引起的,为了理清三者变化对PVP的影响,仅改变其中一个变量为未来值,将其余变量固定在历史时期,估算未来PVP变化,从而分离每个变量的贡献。由两种情景下近未来和远未来时期地表向下短波辐射(图4)变化引起的PVP变化可知,SSP1-2.6情景下,由于地表向下短波辐射的变化,几乎整个近海区域的预估PVP都呈现出增加趋势,远未来的PVP增加范围和幅度较近未来增大,近未来的最大增幅为3.87%,远未来的最大增幅达6.64%。SSP5-8.5情景下,PVP变化大致呈现北部增加、南部减小的态势,远未来的变化趋势在南北两个方向上均较近未来更显著,且幅度进一步加大。两个时期北部最大增幅分别为2.17%(近未来)和5.41%(远未来)。

图4

图4   SSP1-2.6和SSP5-8.5情景下近未来和远未来时期地表向下短波辐射贡献的PVP变化

Fig. 4   PVP changes contributed by surface downwelling shortwave radiation in near- and far-future under SSP1-2.6 and SSP5-8.5 scenarios


图5看出,近地表气温对PVP的贡献为负,研究区范围内PVP都呈减少趋势。近未来的温度变化对研究区的PVP变化影响较弱,仅有北部地区少数格点通过显著性检验。由变暖引起的最大降幅分别为0.66%(SSP1-2.6)和0.73%(SSP5-8.5)。而到21世纪末,温度变化对PVP的影响较近未来显著增强,特别是SSP5-8.5情景下研究区整体的PVP降低趋势均通过显著性检验。此时,温度变化导致的区域最大降幅分别为 0.78%(SSP1-2.6)和1.08%(SSP5-8.5)。这表明一定程度下的环境温度升高会降低PVP,且随着气候变暖程度加剧,减少将更显著。由风速变化引起的PVP变化幅度很小,且均未通过显著性检验(图略)。

图5

图5   SSP1-2.6和SSP5-8.5情景下近未来和远未来时期近地表气温贡献的PVP变化

Fig. 5   PVP changes contributed by near-surface air temperature in near- and far-future under SSP1-2.6 and SSP5-8.5 scenarios


综上可知,地表向下短波辐射对预估PVP变化的影响大于近地表气温,是导致PVP变化的主要驱动因素。

3 结论

本研究利用CMIP6全球气候模式模拟数据,估算了SSP1-2.6和SSP5-8.5两种典型情景下,气候变化对中国近海光伏发电潜力的潜在影响,主要结论如下。

(1)近未来时期,两种情景下的光伏发电潜力都呈现出研究区北部增长、南部减小的趋势,只是在量级上有所不同。SSP1-2.6情景下的PVP最大增幅预估将超过3%,约是SSP5-8.5情景下的1.8倍。远未来时期,SSP1-2.6情景下PVP转变为几乎整个研究区域都呈现出增长态势;而在SSP5-8.5情景下PVP变化的空间形态与近未来相似,但变化幅度在正负两个方向上都有所增强。

(2) SSP1-2.6情景下,近未来和远未来的全年PVP都将增加,最大增幅均出现在2月,分别为2.18%和4.20%。SSP5-8.5情景下两个时期PVP都在6—9月呈现出负变化。其中,8月减少最明显,分别为-0.88%(近未来)和-1.13%(远未来)。最大增幅在近未来出现在2月(1.02%),远未来出现在1月(2.61%)。该情景下未来夏季温度的增加对光伏发电系统产生了负面影响。

(3)近地表短波辐射增加会促进PVP增加,而升温则对PVP产生负向影响,研究区内由风速变化引起的PVP变化较小。总体来看,近地表辐射对PVP变化的影响大于气温,是驱动PVP变化的主导原因。

本研究结果基于固定技术参数,未来光伏技术进步可能改变不同年份的系统鲁棒性。气候变化通过影响气象要素对可再生能源的发电性能产生重要影响,而提升可再生能源发电亦能显著降低温室气体排放,进而减缓气候变化,两者存在相互耦合、相互作用关系。本研究结果表明,在低排放情景下,我国近海光伏发电潜力在远期呈现增长趋势且显著优于高排放情景,凸显了低碳转型对可再生能源系统的正向反馈机制。建议采用碳定价、可再生能源配额等政策引导,弱化对高碳路径的依赖。同时,近海光伏规模化开发需构建生态保护协同机制,严格规避生态敏感区域。积极探索“光伏-海洋牧场”多能互补的生态友好型开发模式,并基于生态系统承载力阈值建立海域空间多功能利用的统筹管理机制,以平衡可再生能源开发与近海生物多样性保护目标。通过制定强有力的减排政策和可再生能源发展策略,不仅能够有效促进近海光伏发电的规模化应用,还将对减少温室气体排放、改善区域生态环境产生积极影响。

参考文献

IPCC. Climate change 2023: synthesis report[M]. Cambridge: Cambridge University Press, 2023

[本文引用: 1]

Meinshausen M, Meinshausen N, Hare W, et al.

Greenhouse-gas emission targets for limiting global warming to 2 degrees C

[J]. Nature, 2009 (458): 1158-1162

[本文引用: 1]

Allen M R, Frame D J, Huntingford C, et al.

Warming caused by cumulative carbon emissions towards the trillionth tonne

[J]. Nature, 2009 (458): 1163-1166

Matthews H D, Gillett N P, Stott P A, et al.

The proportionality of global warming to cumulative carbon emissions

[J]. Nature, 2009 (459): 829-832

[本文引用: 1]

吴亚楠, 周庆伟, 武贺, .

中国近海太阳能资源特征分析及储量评估

[J]. 太阳能学报, 2023, 44 (12): 162-169.

DOI:10.19912/j.0254-0096.tynxb.2022-1293      [本文引用: 2]

利用ERA5再分析资料研究中国近海太阳能年际、季节、月尺度和不同海区的时空分布特征,评估太阳能资源丰富程度,并对太阳能资源总量进行估算。结果表明:多年平均海上太阳总辐射范围为4886~7611 MJ/m<sup>2</sup>,年均辐射为6429 MJ/m<sup>2</sup>;太阳辐射随春、夏、秋、冬季节的变化而逐渐减小,分别为1894、1827、1462、1287 MJ/m<sup>2</sup>,春季最大、冬季最小,春夏季基本持平;月均总辐射在春季5月份最大,为650 MJ/m<sup>2</sup>,在冬季12月份最小,为377 MJ/m<sup>2</sup>。从空间上来看,渤海、黄海、东海太阳总辐射相近,年均辐射分别为5625、5581、5622 MJ/m<sup>2</sup>,南海中西部和中东部年均辐射量最大,并呈现出向南北两端递减的趋势,年均辐射为6843 MJ/m<sup>2</sup>,较渤、黄、东3个海区辐射平均值高出22%。经估算,中国近海太阳能资源年总量约为14&#x000D7;10<sup>9</sup> GWh,水深H&lt;10、30、50 m的海域太阳能资源年总量分别约为600&#x000D7;10<sup>6</sup>、1700&#x000D7;10<sup>6</sup>、2800&#x000D7;10<sup>6</sup> GWh,总体来说海上太阳能资源很丰富,具有巨大的开发利用价值。

Wu Y N, Zhou Q W, Wu H, et al.

Characteristics analysis and reserve evaluation of offshore solar energy resources in China

[J]. Acta Energiae Solaris Sinica, 2023, 44 (12): 162-169 (in Chinese)

DOI:10.19912/j.0254-0096.tynxb.2022-1293      [本文引用: 2]

Based on the ERA5 reanalysis dataset, the temporal and spatial variability characteristics of Chinese offshore solar energy (OSE) resources are analyzed at annual, seasonal and monthly scales in different sea areas. The richness level and the reserve of the OSE resources are evaluated. The results show that the annual offshore global horizontal radiation (GHR) is in the range of 4886-7611 MJ/m<sup>2</sup>, and the annual mean value is 6429 MJ/m<sup>2</sup>. The seasonal GHR has a decreasing trend from spring to winter with the corresponding values, 1894, 1827, 1462, 1287 MJ/m<sup>2</sup>. GHR has a maximum in spring, with little difference to summer, and it has a minimum in winter. On a monthly scale, the maximum of GHR of 650 MJ/m<sup>2</sup> occurs in May and the minimum of 377 MJ/m<sup>2</sup> in December. In terms of spatial distribution, the GHR in the Bohai Sea, the Yellow Sea and the East Sea have similar values of 5625, 5581 and 5622 MJ/m<sup>2</sup>, respectively. The South Sea's annual GHR of 6843 MJ/m<sup>2</sup> is the highest of the four, 22% higher than the average GHR of the other three. In the South Sea, the maximum occurs in the mid-east part and mid-west part, with a downward trend towards the north and south part. The annual OSE resources reserve is estimated at 14&#x000D7;10<sup>9</sup> GWh. It's 600&#x000D7;10<sup>6</sup>, 1700&#x000D7;10<sup>6</sup>, 2800&#x000D7;10<sup>6</sup> GWh for those sea areas when their water depth is less than 10, 30, 50 m, respectively. As a whole, OSE is abundant in the China Sea and has great value to develop and exploit.

Li X, Mauzerall D L, Bergin M H.

Global reduction of solar power generation efficiency due to aerosols and panel soiling

[J]. Nature Sustainability, 2020, 3 (9): 1-8

DOI:10.1038/s41893-020-0471-3      [本文引用: 1]

Gil C L T.

Impact of climate change on solar irradiation and variability over the Iberian Peninsula using regional climate models

[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2019, 39 (3). DOI: 10.1002/joc.5916

Vliet M T H V, Wiberg D, Leduc S, et al.

Power-generation system vulnerability and adaptation to changes in climate and water resources

[J]. Nature Climate Change, 2016. DOI: 10.1038/nclimate2903

Jennifer C, Gabrial A, Olivier D.

Climate change impacts on the energy system: a review of trends and gaps

[J]. Climatic Change, 2018: 1-15

[本文引用: 1]

UNFCCC. Adoption of the Paris Agreement[R]. Geneva, Switzerland: United Nations Office at Geneva, 2015

[本文引用: 1]

Kimon K, Florian F, Ana D V, et al. Global energy and climate outlook 2021: advancing towards climate neutrality[R/OL]. 2021 [2025-04-01]. https://publications.jrc.ec.europa.eu/repository/handle/JRC126767

URL    

Wild M, Folini D, Henschel F, et al.

Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems

[J]. Solar Energy, 2015 (116): 12-24

[本文引用: 2]

Arvizu D, Balaya P, Cabeza L, et al. Direct solar energy. Special report on renewable energy sources and climate change mitigation[M]. Cambridge: Cambridge University Press, 2011

[本文引用: 1]

Jerez S, Tobin I, Vautard R, et al.

The impact of climate change on photovoltaic power generation in Europe

[J]. Nature Communication, 2015 (6). DOI: 10.1038/ncomms10014

[本文引用: 3]

Costa S C, Diniz A S A, Kazmerski, L L.

Dust and soiling issues and impacts relating to solar energy systems: literature review update for 2012-2015

[J]. Energy, Ecology, and Business, 2016 (63): 33-61

[本文引用: 1]

Gutiérrez C, Somot S, Nabat P, et al.

Future evolution of surface solar radiation and photovoltaic potential in Europe: investigating the role of aerosols

[J]. Environmental Research Letters, 2020, 15: 4035

[本文引用: 1]

Davy R, Gnatiuk N, Pettersson L, et al.

Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea

[J]. Renewable and Sustainable Energy Reviews, 2018, 81 (P2): 1652-1659

DOI:10.1016/j.rser.2017.05.253      URL     [本文引用: 1]

Karnauskas K B, Lundquist J K, Zhang L.

Southward shift of the global wind energy resource under high carbon dioxide emissions

[J]. Nature Geoscience, 2017. DOI: 10.1038/s41561-017-0029-9

[本文引用: 1]

Yang L, Jiang J, Liu T, et al.

Projections of future changes in solar radiation in China based on CMIP5 climate models

[J]. Global Energy Interconnection, 2018, 1 (4): 452-459

[本文引用: 1]

邓荔. 不同排放情景达到碳中和下中国区域气候变化的预估[D]. 南京: 南京信息工程大学, 2023.

[本文引用: 1]

Deng L. Projection of climate change in China under carbon neutral scenarios[D]. Nanjing: Nanjing University of Information Science and Technology, 2023 (in Chinese)

[本文引用: 1]

杨晨辉, 王艳君, 苏布达, .

SSP“双碳”路径下赣江流域径流变化趋势

[J]. 气候变化研究进展, 2022, 18 (2): 177-187.

[本文引用: 1]

Yang C H, Wang Y J, Su B D, et al.

Runoff variation trend of Ganjiang River basin under SSP “Double Carbon” path

[J]. Climate Change Research, 2022, 18 (2): 177-187 (in Chinese)

[本文引用: 1]

O′Neill B C, Tebaldi C, van Vuuren D P, et al.

The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP 6

[J]. Geoscientific Model Development, 2016, 9 (9): 3461-3482

DOI:10.5194/gmd-9-3461-2016      URL     [本文引用: 2]

. Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.

Gidden M J, Riahi K, Smith S J, et al.

Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century

[J]. Geoscientific Model Development, 2019, 12 (4): 1443-1475

DOI:10.5194/gmd-12-1443-2019      URL    

. We present a suite of nine scenarios of future emissions trajectories of\nanthropogenic sources, a key deliverable of the ScenarioMIP experiment within\nCMIP6. Integrated assessment model results for 14 different emissions species\nand 13 emissions sectors are provided for each scenario with consistent\ntransitions from the historical data used in CMIP6 to future trajectories using\nautomated harmonization before being downscaled to provide higher emissions\nsource spatial detail. We find that the scenarios span a wide range of\nend-of-century radiative forcing values, thus making this set of scenarios ideal\nfor exploring a variety of warming pathways. The set of scenarios is bounded on\nthe low end by a 1.9 W m−2 scenario, ideal for analyzing a world with\nend-of-century temperatures well below 2 ∘C, and on the high end by a 8.5 W m−2\nscenario, resulting in an increase in warming of nearly 5 ∘C over pre-industrial\nlevels. Between these two extremes, scenarios are provided such that differences\nbetween forcing outcomes provide statistically significant regional temperature\noutcomes to maximize their usefulness for downstream experiments within CMIP6.\nA wide range of scenario data products are provided for the CMIP6 scientific\ncommunity including global, regional, and gridded emissions datasets.

Tebaldi C, Debeire K, Eyring V, et al.

Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP 6

[J]. Earth System Dynamics, 2021, 12 (1): 253-293

DOI:10.5194/esd-12-253-2021      URL     [本文引用: 1]

. The Scenario Model Intercomparison Project (ScenarioMIP) defines and coordinates the main set of future climate projections, based on concentration-driven simulations, within the Coupled Model Intercomparison Project phase 6 (CMIP6). This paper presents a range of its outcomes by synthesizing results from the participating global coupled Earth system models. We limit our scope to the analysis of strictly geophysical outcomes: mainly global averages and spatial patterns of change for surface air temperature and precipitation. We also compare CMIP6 projections to CMIP5 results, especially for those scenarios that were designed to provide continuity across the CMIP phases, at the same time highlighting important differences in forcing composition, as well as in results. The range of future temperature and precipitation changes by the end of the century (2081–2100) encompassing the Tier 1 experiments based on the Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) and SSP1-1.9 spans a larger range of outcomes compared to CMIP5, due to higher warming (by close to 1.5 ∘C) reached at the upper end of the 5 %–95 % envelope of the highest scenario (SSP5-8.5). This is due to both the wider range of radiative forcing that the new scenarios cover and the higher climate sensitivities in some of the new models compared to their CMIP5 predecessors. Spatial patterns of change for temperature and precipitation averaged over models and scenarios have familiar features, and an analysis of their variations confirms model structural differences to be the dominant source of uncertainty. Models also differ with respect to the size and evolution of internal variability as measured by individual models' initial condition ensemble spreads, according to a set of initial condition ensemble simulations available under SSP3-7.0. These experiments suggest a tendency for internal variability to decrease along the course of the century in this scenario, a result that will benefit from further analysis over a larger set of models. Benefits of mitigation, all else being equal in terms of societal drivers, appear clearly when comparing scenarios developed under the same SSP but to which different degrees of mitigation have been applied. It is also found that a mild overshoot in temperature of a few decades around mid-century, as represented in SSP5-3.4OS, does not affect the end outcome of temperature and precipitation changes by 2100, which return to the same levels as those reached by the gradually increasing SSP4-3.4 (not erasing the possibility, however, that other aspects of the system may not be as easily reversible). Central estimates of the time at which the ensemble means of the different scenarios reach a given warming level might be biased by the inclusion of models that have shown faster warming in the historical period than the observed. Those estimates show all scenarios reaching 1.5 ∘C of warming compared to the 1850–1900 baseline in the second half of the current decade, with the time span between slow and fast warming covering between 20 and 27 years from present. The warming level of 2 ∘C of warming is reached as early as 2039 by the ensemble mean under SSP5-8.5 but as late as the mid-2060s under SSP1-2.6. The highest warming level considered (5 ∘C) is reached by the ensemble mean only under SSP5-8.5 and not until the mid-2090s.

Kriegler E, Bauer N, Popp A, et al.

Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century

[J]. Global Environmental Change: Human and Policy Dimensions, 2017 (42): 297-315

[本文引用: 1]

Mavromatakis F, Makrides G, Georghiou G, et al.

Modeling the photovoltaic potential of a site

[J]. Renewable Energy, 2010, 35 (7): 1387-1390

DOI:10.1016/j.renene.2009.11.010      URL     [本文引用: 1]

Chenni R, Makhlouf M, Kerbache T, et al.

A detailed modeling method for photovoltaic cells

[J]. Energy, 2007, 32 (9): 1724-1730

DOI:10.1016/j.energy.2006.12.006      URL     [本文引用: 1]

Boé J, Terray L, Habets f, et al.

Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies

[J]. International Journal of Climatology, 2007, 27 (12): 1643-1655

DOI:10.1002/joc.v27:12      URL     [本文引用: 1]

黄云飞, 龙银平, 马启民, .

基于CMIP6的2015—2100年中国气象干旱指数高分辨率数据集

[J/OL]. 2025 [2025-04-01]. https://link.cnki.net/urlid/11.6035.N.20250703.1231.002.

URL     [本文引用: 1]

Huang Y F, Long Y P, Ma Q M, et al.

A dataset of high-resolution meteorological drought indices under the CMIP6 framework in China (2015-2100)

[J/OL]. 2025 [2025-04-01]. https://link.cnki.net/urlid/11.6035.N.20250703.1231.002 (in Chinese)

URL     [本文引用: 1]

郑衍欣, 李双林, 何源.

共享社会经济路径(SSPs)下未来30年长江流域夏季降水预估

[J]. 大气科学, 2023, 47 (5): 1405-1420.

[本文引用: 1]

Zheng Y X, Li S L, He Y.

Projection of summer rainfall in the Yangtze River basin in the next 30 years under different shared socioeconomic pathways

[J]. Chinese Journal of Atmospheric Sciences, 2023, 47 (5): 1405-1420 (in Chinese)

[本文引用: 1]

Zuluaga C F, Avila-Diaz A, Justino F B, et al.

The climate change perspective of photovoltaic power potential in Brazil

[J]. Renewable Energy, 2022 (193): 1019-1031

[本文引用: 1]

/

京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn