气候变化研究进展, 2025, 21(5): 641-658 doi: 10.12006/j.issn.1673-1719.2025.072

气候变化影响

气候变化对水稻病害影响的研究进展与展望

何昊,, 李曼, 刘淼, 陈铭杰, 李琪, 胡正华,

南京信息工程大学气象灾害预报预警与评估协同创新中心/生态与应用气象学院南京 210044

Impact of climate change on rice diseases: research progress and future prospects

HE Hao,, LI Man, LIU Miao, CHEN Ming-Jie, LI Qi, HU Zheng-Hua,

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters / School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China

通讯作者: 胡正华,男,教授,zhhu@nuist.edu.cn

收稿日期: 2025-04-2   修回日期: 2025-06-16  

基金资助: 国家自然科学基金面上项目(42071023)
国家自然科学基金面上项目(42375114)

Received: 2025-04-2   Revised: 2025-06-16  

作者简介 About authors

何昊,男,博士研究生,202311080003@nuist.edu.cn

摘要

气候变化对水稻病害的影响日益显著,已成为影响全球水稻生产和粮食安全的重要因素。文中综述了气候变化影响水稻病害的主要机制及相关研究进展,主要包括:气温升高加速病原体生命周期,提高其孢子萌发、侵染和扩散能力,同时抑制水稻防御激素信号通路,削弱其免疫能力;降水模式的变化不仅影响田间湿度和病原体传播,还通过改变水稻冠层结构和根际环境,调控微气候与土壤微生物群落,间接影响病害的发生与流行;大气CO2浓度升高改变水稻碳氮代谢,降低抗病次生代谢物含量,而O3浓度升高则通过氧化胁迫破坏水稻的物理防御屏障,干扰病害信号传导网络;极端天气事件如台风、干旱增加水稻的生理胁迫和易感性,并助推病害远距离扩散。当前研究虽揭示了部分关键机制,但在跨区域、长时间尺度的监测和系统性解析方面仍存在局限,尤其是病原体的适应性进化及其与水稻生理防御的动态关系仍需深入探讨。未来建议开展跨尺度、跨区域的系统研究,以揭示水稻病害在不同气候情景下的传播规律与动态响应。此外,应加快抗病品种选育、优化农艺管理、构建智能监测预警系统,实现从基因到田间、从预警到干预的全链条、多层次协同防控体系,为气候变化背景下的水稻病害防控提供科学支撑。

关键词: 气候变化; 水稻病害; 致病机制; 抗病性

Abstract

Climate change is exerting an increasingly profound influence on rice diseases, emerging as a major threat to global rice production and food security. This review synthesizes current understanding of the mechanisms by which climate change affects rice disease dynamics, alongside recent research advances. Rising temperatures accelerate pathogen life cycles, promote spore germination, infection, and dissemination, and impair rice immunity by disrupting hormone signaling pathways. Altered precipitation patterns not only increase field humidity and facilitate pathogen spread, but also reshape rice canopy structure and rhizosphere environments: modifying microclimates and microbial communities that indirectly influence disease outbreaks. Elevated atmospheric CO2 alters rice carbon and nitrogen metabolism, often reducing the synthesis of defense-related secondary metabolites, while higher O3 levels induce oxidative stress, weakening physical barriers and interfering with disease signaling networks. Extreme weather events, such as typhoons and droughts, further exacerbate physiological stress and susceptibility in rice, and enhance the long-distance transmission of pathogens. While significant progress has been made in uncovering these mechanisms, key limitations persist particularly the lack of long-term, cross-regional monitoring and integrated analysis. The adaptive evolution of pathogens and their dynamic interactions with host defense systems under changing climates remain underexplored. It is recommended that future research focus on cross-scale and cross-regional systematic studies to uncover the transmission patterns and dynamic responses of rice diseases under various climate scenarios. Efforts should be made to accelerate the breeding of disease-resistant varieties, optimize agronomic practices, and develop intelligent monitoring and early warning systems. This will help establish a comprehensive, multi-level, and coordinated control system that spans from genetic research to field management, and from early warning to intervention, providing strong scientific support for rice disease control in the context of climate change.

Keywords: Climate change; Rice disease; Pathogenic mechanism; Disease resistance

PDF (2781KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

何昊, 李曼, 刘淼, 陈铭杰, 李琪, 胡正华. 气候变化对水稻病害影响的研究进展与展望[J]. 气候变化研究进展, 2025, 21(5): 641-658 doi:10.12006/j.issn.1673-1719.2025.072

HE Hao, LI Man, LIU Miao, CHEN Ming-Jie, LI Qi, HU Zheng-Hua. Impact of climate change on rice diseases: research progress and future prospects[J]. Advances in Climate Change Research, 2025, 21(5): 641-658 doi:10.12006/j.issn.1673-1719.2025.072

引言

气候变化是21世纪典型的全球性生态环境问题,农业生产对气候变化的敏感性尤为突出,不仅直接关系到粮食安全和经济发展,更关乎全球人口的生存与福祉[1-2]。水稻是世界范围内的主粮作物,为全球超过一半人口提供主要热量来源,尤其是在亚洲、非洲和拉丁美洲等地区,具有不可替代地位[3-4]。作为典型的C3以及热敏感型作物,水稻生产受气候条件的高度影响,现有研究主要集中于气候变化对水稻生长、产量、光合效率及水分利用效率的影响,已经取得了一定进展[5-8]。然而相较之下,气候变化对水稻病害的动态变化、流行机制及其与环境因子的相互作用的研究仍显不足,这一领域亟待深入探索。

水稻是高密集种植的作物,易受到多种病原体包括真菌、细菌和病毒的侵害。例如,稻瘟病被称为“水稻癌症”,是水稻种植中最严重的病害之一,该病害在高湿热环境下尤为流行,主要影响水稻的叶片、茎部和穗部,其中穗瘟病最具破坏性,每年可导致10%~30%的水稻产量损失[9-10];水稻细菌性条斑病表现为叶片出现黄色条纹,多发于高温多雨地区,并且强降雨和洪水有利于病原体传播[11];中国南方黑条矮缩病和水稻条纹病属于病毒性病害,由飞虱等昆虫传播,气温升高会促进飞虱的繁殖与迁飞,加快病害的传播速度[12-13]。本文将探讨气候变化对水稻病害的主要影响机制、研究进展及应对策略。总体而言,气候变化因素,如大气CO2浓度升高、气温上升、降水模式变化和极端天气事件频发,正显著改变病原体的生态分布、传播路径及其与寄主作物的相互作用,进而加剧作物病害的风险[14-16]。与传统的关注生产指标的研究不同,本文聚焦于气候变化如何影响病原体的生命周期、传播路径及生态适应性,探索病害动态机制。此外,深入分析气候因子与作物抗病性之间的多维交互作用,揭示病害流行的复杂性和动态变化。在此基础上,讨论了水稻病害的应对策略,包括抗病品种的选育、农艺措施的优化以及智能化监测与预警系统的建设。为应对气候变化带来的挑战、减少病害的影响并提高农业生产的可持续性提供科学依据和实践指导。研究的具体框架见图1

图1

图1   气候变化对水稻病害影响、抗病性机制反馈、应对策略以及研究展望流程图

Fig. 1   Flowchart of the climate change on rice diseases, feedback mechanisms of disease resistance, response strategies, and future research directions


1 作物感病主要特点

作物感病是指作物因真菌、细菌、病毒或线虫等病原体侵染而表现出病害症状的现象。病原体通过气孔、皮孔、伤口或直接穿透细胞壁等方式侵入作物组织,在寄主体内定殖后不断生长繁殖,并分泌多种毒素或降解酶,破坏寄主细胞结构与功能,引起组织坏死和生理失调[10,17]。例如,稻瘟病菌通过分泌降解酶穿透水稻叶片细胞壁,进入细胞后吸收养分并扩散,导致病斑和坏死[9,18],水稻条斑病菌则通过伤口或气孔进入寄主,在细胞内分泌降解酶和毒素,破坏细胞壁,导致细胞内容物流失,形成叶片病变[19]。病毒性病害通常通过昆虫媒介传播,病毒在寄主细胞内复制,导致植株矮化、叶片黄化等症状[20-22]

水稻病害症状具有显著的多样性和破坏性,且因病原体种类、侵染部位以及寄主作物的特性呈现不同形式。常见症状包括:叶片黄化、坏死斑点,如叶瘟病引发的灰褐色病斑与条斑,穗颈瘟的褐色至黑褐色斑,以及褐斑病导致的圆形至椭圆形的褐色斑[23-24];茎秆和根系腐烂,如纹枯病导致茎秆病斑并引发植株倒伏[25];果实和籽粒畸形,如稻曲病引起穗部形成绿色或黄色瘤状物[26];以及全株系统性症状,如病毒性病害使植株矮化、叶片卷曲并枯萎[27-28]。这些症状直接破坏作物的光合作用和养分吸收功能,显著降低产量和品质,导致作物减产甚至绝产。

2 气候变化对水稻病害的影响

水稻生长环境湿润温暖,极易受到多种病原体的侵染。当前水稻病害种类繁多、分布广泛,主要危害叶片、茎秆、穗部和根系等关键部位,常在抽穗期、灌浆期等关键生育阶段集中暴发,对产量和品质构成严重威胁[29]。随着气候变化,病害种类和分布范围进一步扩大,部分热带病害正向高纬度地区蔓延[30]。其次,水稻病害的流行性和季节性受气候影响,高湿、高温环境为病害的暴发提供了理想条件,异常降水和极端天气事件则显著加剧了病害的传播风险[30-31]。同时,水稻病原体的传播途径呈多样化特征,包括气溶胶传播、水体介导扩散以及昆虫等媒介的间接传播[32-33]。本文将从气温上升、降水变化、CO2浓度上升、O3浓度上升和气象灾害5个方面系统梳理气候变化不同因子对水稻病害的影响机理(图2)。

图2

图2   气候变化对水稻病害影响示意图

Fig. 2   Schematic diagram of the impact of climate change on rice diseases


2.1 气温上升的影响

与工业革命时期相比,温室气体的大量排放导致全球气温上升1.26℃,并以每十年0.2℃的速率持续上升[34-35]。首先,气温上升主要表现为加速病原体的生命周期和增强其侵染能力,减弱寄主植物的抗病性,改变寄主与病原体之间的相互作用。Matić等[36]研究表明,与低温(18~22℃)相比,水稻恶苗病在中温(22~26℃)和高温(26~30℃)条件下,病情指数显著升高67.5%~95.8%,主要与病原真菌DNA含量的增加相关。Du等[37]进一步指出,稻瘟病菌的孢子在28~30℃萌发最活跃,在35℃条件下萌发速率更快,从而缩短病程周期,增强病原体在同一生长季内的重复侵染能力。

其次,气温升高对水稻宿主的抗病性调节机制也产生复杂影响。Chen等[38]发现,相较于27℃,在31℃条件下,水稻抗病基因(XA21)表达水平显著下调,导致白叶枯病发病率上升。高温胁迫通常会干扰植物的信号转导路径和激素平衡,例如抑制茉莉酸(JA)与水杨酸(SA)通路的正常表达,削弱病原识别与防御反应的协调性;此外,水稻体内的抗氧化酶活性显著降低,无法有效清除由病原体侵染引发的活性氧累积,加速细胞损伤和病害扩展[39-40]。但在某些温度区间内,也可能激活植物的应激响应机制,如中国水稻研究所研究发现,28℃条件下稻瘟病菌诱导茉莉酸合成上调,表现出一定的温度诱导抗性[41]

第三,温升通过改变稻田微气候结构,为病原菌提供适宜的扩散环境。高温条件下,水稻生长加快,叶面积增大,冠层密闭度提高[42-43];导致近地层湿度维持时间延长,形成“高温高湿”的局部小气候,利于病原孢子的沉降、萌发及菌丝体扩展[33-44]。温度升高直接改变了病毒-媒介昆虫-寄主植物的互作关系,间接促进病害发生。在江苏地区的研究报道,2002—2012年水稻条纹叶枯病于2004年达到峰值,局部感染可能是主要来源,与相对湿度相比,温度上升导致了褐飞虱活动剧烈,是主导因素[45];Hwang等[46]研究表明,在30℃条件下,灰飞虱发育周期较24℃缩短5 d,加速害虫世代更替,影响水稻条纹叶枯病的流行。

稻曲病是由真菌稻绿核菌在水稻开花期侵染花部形成“假黑穗”的病害,对温度变化尤为敏感。Jia等[47]研究表明,稻曲病病原的侵染率受水稻抽穗期、生育阶段、温度、相对湿度和湿润持续时间的显著影响,相对于20℃,在25℃、95%相对湿度、120 h湿润条件下,发病率最高,达到92.9%;Song等[48]研究指出,稻-鱼、稻-蟹共作生态系统显著增加了水稻黑穗病的发病率,模拟50%与75%相对湿度下,温度升高加剧了病原孢子萌发率,且在拔节至灌浆阶段最敏感。此外,高温还可能改变水稻根际微生物群落的组成和功能特性,间接影响病害的发生。

更深层次的机制包括气温升高对水稻根际微生态系统的干扰。高温胁迫提高了水稻根际细菌群落的多样性,改变了细菌菌群之间的共生关系,影响参与细胞周转、代谢以及蛋白质合成的基因表达[49]。这可能导致有益微生物(如拮抗真菌和促生菌)的活性降低,使其无法有效抑制病原体的定殖和扩展;高温还可能破坏根际微生物群落的稳定性,减少微生态系统中有益菌的多样性和丰度,削弱其在营养竞争、空间占据以及诱导植物系统抗性等方面的防病能力,这一机制在稻瘟病、稻曲病等高温敏感性病害中表现尤为明显[33,41]

最后,气候变暖打破了病原体的地理生态分布边界,推动其向高纬度区域扩展[17,50]。如Yamamura等[51]发现,水稻叶枯病主要由褐飞虱传播,由于携带病毒的成虫迁移,日本东北和北陆的水稻产区更易受到疾病感染。赵梦等[52]研究表明,2000—2010年我国水稻病虫害发生面积和程度呈波动增加趋势,实际损失较高,区域性分布明显且有北扩的趋势。水稻细菌性条斑病在我国主要分布于长江以南的稻区,近年来随着气温上升,该病在华东、华中局部稻区的发生呈明显上升趋势[42,53]。病原体的扩散可能使其在新的环境中与其他生物发生更复杂的交互作用,进一步加剧病害的流行。

综上,气温升高通过增强病原适应性、扰乱宿主抗性调节、重构传播路径以及导致微生态失衡等机制,系统性地加剧了水稻病害的暴发频率,并扩大了其流行范围。

2.2 降水变化的影响

气候变化引发的降水量、频率与时序的变化,改变水稻田间的水分环境与微气候条件,影响病原体的生存、传播路径和致病能力。主要体现在三方面:增加田间湿度与叶面持水时间、增强病媒昆虫活动,以及扰乱根际生态系统稳定性。

最直接的影响是降水增加会提高田间湿度,且间接影响了空气中水蒸气分压(即空气中的水汽含量),延长叶片表面的水膜存在时间。例如,稻瘟病菌和条锈病菌在叶面持续湿润至少5 h的情况下更容易发病[24]。气温升高使空气的饱和水汽压增加,进一步加剧露水形成,使叶面湿润时长增加,从而提升病原侵染效率[17]。Macasero等[54]研究表明,菲律宾水稻种植区,雨养种植模式以及气候变化导致的降水增多,是导致细菌性褐斑病暴发的重要原因。陈冰等[55]采用逐步回归和通径分析方法,明确了对于我国南方晚稻,影响黑条矮缩病的气象因子主要是6月中旬至7月上旬降水日数、6月下旬至7月上旬相对湿度。而降水减少可能增强作物的自我防御反应,如Naveenkumar等[56]发现,在年降雨量偏少的年份,水稻叶片内的防御酶活性显著上调,纹枯病的发病率有所降低。

降水还为水稻病害传播媒介提供了理想环境,携带病菌的昆虫在高湿度、温暖的环境下繁殖速度更快。张国等[57]指出,江苏2020年稻飞虱暴发的主要影响因素:一是6月中旬至7月下旬的超长雨期为早期虫源的迁入和降落提供了有利条件;二是9月初的适宜气温促进了田间短翅型褐飞虱的大量繁殖。颜松毅等[58]在粤西等地也观察到,在降水日数偏多年份,如2013年,稻飞虱的繁殖和病毒传播显著增加,水稻黑条矮缩病平均发病率达12.48%。此外,降水时序的异常在水稻抽穗期、灌浆期等关键阶段,破坏植株水分代谢与激素调控平衡,诱发生理胁迫,间接影响其抗病反应能力[10,44]

过量降水易引发田间积水与土壤过饱和状态,破坏水稻根际生态系统的稳定性。根系缺氧会引起通气组织发育受阻,导致根系氧化力下降,削弱水分与养分的吸收能力,进一步诱发植株系统性免疫能力的下降[59-60]。Martínez-Arias等[61]研究表明,强降雨导致的田间长期洪涝胁迫通过诱发植物缺氧及根际微生物群落失调,削弱植物-微生物共生系统稳定性。缺氧环境为土壤病原体的繁殖与传播提供了理想条件,常见的枯萎病原菌如尖孢镰刀菌在缺氧且富含有机质的环境中更易分泌胞外酶和毒素,穿透根皮层细胞,引发根腐和系统性萎蔫病害[62-63]。同时,排水不畅导致的长期高湿状态会显著扰乱根际微生物群落结构,有益微生物如芽孢杆菌、荧光假单胞菌等的种群密度显著下降,其通过营养竞争、合成抗菌肽、诱导宿主系统抗性等作用机制被削弱[64-65]。土壤中对病菌拮抗能力下降,导致病原菌定殖位点增加,增强了病害持续循环的生态基础。

干旱频发是降水不均的典型表现之一,水稻植株面临严重的水分胁迫,体内活性氧水平升高,导致细胞膜的氧化损伤和组织坏死,削弱植株的整体健康水平[66]。水稻在干旱胁迫下通过关闭气孔抑制蒸腾来节水,但同时也影响光合作用与抗病相关代谢途径的正常运行,导致抗病基因表达水平下降[66-67]。干裂组织可能成为病原入侵的新通道,而体液浓缩带来的渗透压变化有利于飞虱等昆虫媒介繁殖,间接加剧病毒性病害的传播[68]。干旱还可能促使某些真菌进入休眠状态,一旦湿度恢复则迅速活化,诱发集中性病害暴发[69]

2.3 大气CO2浓度升高的影响

当前大气中CO2浓度已超过420×10-6,较工业化前提升约48%,预计至2100年升至538×10-6~670×10-6[70]。大气CO2浓度升高对水稻-病原系统的影响具有高度复杂性和双向性,可通过影响水稻的生理代谢、病原体生态适应以及田间微环境,进而改变病害的发生规律与传播动态。

首先是潜在抑病效应。CO2升高可能增强水稻的光合能力和生物量积累,促进根系发育,提升整体生理活力,在一定程度上增强对病原体的抵抗能力[5,71]。高CO2浓度还能引起叶片结构变化,如气孔关闭频率上升、角质层增厚等,抑制病原体的物理入侵。如Dorneles等[72]发现,大气CO2浓度为700×10-6时,水稻酚类物质和木质素含量上升,形成更强的细胞壁屏障,有效抑制细菌性褐斑病的扩展。Chen等[73]研究表明,高CO2条件可增强水通道蛋白(OsPIP1;3)表达,即调节水通道的活动,增加水稻的水分吸收能力,提高光合效率并显著减少细菌病害发生,其中白叶枯病减少75.6%,细菌性条斑病减少87.6%。此外,气孔导度的下降不仅降低病原通过气孔的侵入概率,也有助于减少水分散失,提高水分利用效率,在一定程度上维持植物抗性[74-76]

然而,当前多数实证研究表明高CO2更可能间接促进病害流行。早期Kobayashi等[77]基于FACE平台研究表明,CO2升高通过改变植物的形态(如分蘖增加、叶片面积增大)和生理特性(如硅含量降低)间接促进稻瘟病和纹枯病的流行;Goria等[78]研究表明,高大气CO2浓度使得研究中共计3个水稻品种叶片硅含量显著降低,稻瘟病严重程度加剧;Matić等[36]研究表明,与450×10-6的背景CO2浓度相比,高CO2浓度(850×10-6)条件下显著增加地中海地区水稻恶苗病疾病指数。在代谢层面,高CO2常导致碳氮代谢比例失衡:光合作用增强使可溶性糖(如葡萄糖、果糖)积累,而氨基酸和硝酸盐等含氮化合物减少,削弱了抗病相关代谢物的合成能力[79-80]。例如,酚类化合物的合成减少,削弱了水稻通过结构性加固限制病原扩展的能力;另一方面,与防御相关的酶如过氧化物酶、苯丙氨酸解氨酶的活性下降,进一步降低了对真菌和细菌侵染的响应能力[42,81]。在营养生态层面,糖类积累为病原体提供了充足碳源,尤其对依赖活组织为营养基础的真菌、细菌等,构成了侵染优势[82-83]。对于细菌性病原体,高CO2条件下的高糖环境显著激活其代谢途径,尤其是毒素合成与分泌机制,并且高糖环境可能通过干扰宿主的糖信号免疫或减少防御性代谢产物的合成,使病害加剧[83-85]

在分子水平上,CO2升高被证实可显著干扰水稻的激素信号网络,尤其是与抗病相关的茉莉酸与水杨酸通路[41,86];并且高CO2导致碳氮比例失衡,使二者合成下调,进而影响病程相关蛋白(PR蛋白)的表达与病害早期反应能力[87]。细胞壁防御机制亦受到影响,由于氮代谢受限,细胞壁结构疏松,病原菌分泌的胞外酶更易穿透宿主屏障,引发大范围组织坏死与系统性感染[88-89]

2.4 大气O3浓度升高的影响

氮氧化物(NOₓ)和挥发性有机物(VOCs)在高温强光照条件下发生光化学反应,导致近地面O3浓度持续攀升,且极端气候如热浪、干旱等进一步加剧了O3的累积与滞留[90-92]。近年来,O3浓度升高对水稻病害发生发展的双向调控效应已成为全球关注的研究前沿之一。

一方面,适度浓度的O3对水稻病害具有一定的抑制作用,主要通过对病原体的直接氧化杀灭效应以及诱导水稻自身防御系统的激活。O3能够通过氧化病原体的细胞壁、细胞膜及内部蛋白质和核酸,破坏其结构与功能,进而减少病原体在作物表面的存活和扩散[93-94]。常浩等[95]研究表明,O3对水稻恶苗病菌具有显著抑制作用,且抑制效果随处理时间和浓度的增加而增强,在200 mg/m3处理30 min条件下,菌丝生长和孢子萌发的抑制率分别可达54.47%和90%以上。该机制已在温室消毒、苗床病害控制及种子处理中得到验证,如姚洪军等[96]采用O3喷洒温室水稻苗床,对稻瘟病和纹枯病的防治效果分别达35.63%和71.51%。在植物防御系统方面,O3通过气孔进入植物体内,引发活性氧(ROS)的积累,刺激植物细胞产生一系列信号分子(如Ca²+、硝酸盐、乙烯等)及防御激素(如水杨酸和茉莉酸),激活抗氧化系统;相关酶如超氧化物歧化酶(SOD)、过氧化物酶(POD)、谷胱甘肽还原酶(GR)等被调控以清除过量的ROS[97-98]。研究表明,长期暴露在100×10-9的O3浓度下,稻瘟病的可见病斑面积显著减少,归因于O3诱导防御信号网络的持续激活[99]。此外,O3可促进木质素、酚类及黄酮类物质等抗菌次生代谢物积累,通过MAPK信号途径增强乙烯及一氧化氮(NO)等介质水平,诱发局部过敏反应及程序性细胞死亡,有效限制病原体的扩展[98,100]

然而,高浓度或长时间暴露的O3易引发过度氧化胁迫,反而削弱水稻的健康状况与抗病能力。过量ROS会造成叶片黄化、坏死斑点及早衰,降低光合系统II的最大光化学效率,抑制净光合速率,削弱作物活力[101]。作为C3作物,水稻气孔导度较高,高O3暴露下叶片表面蜡质层和细胞壁结构受损,削弱天然物理屏障,使稻瘟病等病原更易侵入[102]。此外,大规模单一栽培与高湿田间生态环境往往放大了O3的负面效应。在内源激素水平上,O3扰乱生长素、细胞分裂素、赤霉素及水杨酸等的合成与调控,导致激素网络失衡,削弱病程相关蛋白(PR蛋白)及抗性基因的表达效率,增加病害易感性[103-104]。O3引起的水稻叶片损伤可能导致植物释放一些挥发性有机物(VOCs),如醇类、酮类、醛类等,可能成为病原菌的诱因,反向促进病原菌的扩散与侵染[105-106]。例如,乙烯诱导下,水稻OsACS1OsACS2抗病性蛋白基因表达量有所增强,但可能抑制SA介导的系统性抗性,增加稻瘟病暴发风险[107]。最后,高O3条件下某些有机酸在植株体内积累,为病原提供碳源,也可能进一步降低水稻抗病水平[108]

2.5 气象灾害事件的影响

全球气候变化导致台风、干旱、极端降水、冰雹等极端气象灾害发生频率与强度显著增加,不仅直接威胁水稻的正常生长发育,更深刻改变了水稻病害的发生、传播和流行动态,成为病害暴发的重要诱因之一。

台风作为典型的突发性强对流天气,对水稻病害的多重影响尤为显著。首先,强风作用会引发水稻植株的机械性损伤,如叶片撕裂、茎秆折断或大面积倒伏,这些伤口为病原体入侵提供了直接通道[24]。其次,台风伴随的暴雨会大幅提高田间空气相对湿度,创造高湿环境,而病菌的孢子萌发和侵染过程高度依赖湿度,极大地促进了病害的传播和蔓延[17,33]。此外,强风还可能将病菌孢子扩散到更远区域,加速病害的流行范围[109]。台风带来的暴雨可能引发田间洪涝,导致水稻根系缺氧、生长受阻,削弱植株的抗病能力,使其更容易受到病原体侵染[59]。同时,台风带来的极端天气可能打乱水稻的正常生长周期,降低其生理抗性,进一步加剧病害的严重程度。

干旱作为另一典型的极端气象灾害,对水稻病害的影响常通过“先抑制后助长”的复杂途径体现。多数病原如稻瘟病菌偏好湿润环境,干旱会在一定程度上抑制其孢子释放和萌发[110-111]。然而,极端干旱情况会对水稻植株产生严重的生理压力,导致水稻根系供水不足,生长受到抑制,免疫反应减弱。Meher等[112]研究表明,干旱胁迫下,水稻植物体的防御机制难以有效启动,防御基因、组蛋白乙酰转移酶发生转变,细胞膜、叶片等部位容易出现损伤,使得稻瘟病菌更易入侵。特别是在干旱后期或干旱解除时,水稻从水分胁迫中快速恢复生长,但其免疫系统的恢复往往滞后,病菌便容易趁机侵入[113]

一些非传统关注的气象灾害也可能通过多途径影响水稻病害的发生与发展。例如,低温冷害和昼夜温差过大会干扰水稻的生理代谢与防御基因调控,造成易感期延长;连阴雨持续时间过长则导致冠层长期处于潮湿、低光照状态,促使真菌病害高发;紫外线辐射增强可能诱发水稻表皮蜡质层破坏,同时对根际微生物群落也有潜在扰动,影响防御性菌群的稳定性。

3 气候变化下作物抗病性机制反馈

3.1 物理防御的变化

水稻的物理防御主要依赖于外部结构,如角质层、蜡质层和叶片表面的细胞壁,限制病原的附着和入侵。角质层是植物最外层的保护层,能够有效防止水分流失并抵御外界病原的侵袭;蜡质层则对植物表面起保护作用,减少病原菌的附着[114]。而气候变化引起的极端气候条件会影响防御结构的功能,减弱水稻的免疫防线。王莎等[115]研究表明,在干旱条件下,水稻植物可能会增加角质层的厚度以减少水分流失,可能导致角质层的结构变得脆弱。高温则可能导致角质层表面微裂纹的产生,为病原菌的侵入提供了通道[116]。持续降雨冲刷叶片表面蜡质层,降低疏水性,使孢子更易附着[74]

气孔是水稻调节气体交换与水分蒸散的核心结构,同时也是多数细菌性病原体的主要入侵口。在高温、干旱条件下,水稻为减少水分损耗通常通过气孔关闭来保持体内水分平衡[117]。但这种保护机制却可能导致气孔免疫功能受限,削弱对气孔介导病原体侵入的屏障。稻瘟病菌效应蛋白通过靶向气孔调节蛋白,抑制气孔关闭防御,而高温下气孔开闭紊乱进一步加剧病原入侵[118]。Pitaloka等[119]对64个泰国和100个全球水稻品种进行了解剖研究,结果表明气孔的过度关闭或开闭失调均可能削弱水稻对环境变化和病原入侵的反应能力。

3.2 生理生化防御的调整

次生代谢物是水稻化学防御的第一道屏障,包括酚类、黄酮类、植保素等,其合成受多重气候因子抑制。高温干旱胁迫下,苯丙氨酸解氨酶(PAL)和查尔酮合成酶(CHS)活性降低,加剧了稻瘟病、细菌性叶枯病、水稻根结线虫的侵染程度[120-121]。稻瘟病菌通过分泌效应蛋白靶向抑制基因转录,削弱酚类防御[122]。Dorneles等[72]研究表明,在700×10-6的CO2浓度下,光合碳同化增强与氮吸收受限,抑制苯丙烷代谢前体合成,稻叶酚类物质含量下降42%,稻瘟病病斑面积扩大1.8倍。干旱胁迫迫使水稻将资源分配至脯氨酸等渗透调节物质,导致抗病菌的植保素如momilactones合成减少,显著提高水稻纹枯病菌侵染风险[66]

其次,核心防御激素如水杨酸(SA)、茉莉酸(JA)在气候胁迫下的信号传导网络易受干扰。持续高温下调SA合成基因表达,使SA含量降低60%,导致白叶枯病抗性丧失[38];同时激活JA降解酶JAR1,加速JA-Ile水解,阻断稻瘟病抗性基因表达[41]。暴雨后高湿环境促进乙烯合成,乙烯通过抑制SA信号通路干扰系统获得性抗性,诱导气孔开放,增加细菌性条斑病菌侵染概率[99]。持续上升的大气O3诱导活性氧增长显著,氧化SA合成关键酶PAL,并激活JA信号抑制因子,导致SA与JA协同防御失效[98]

面对气候胁迫,水稻通常通过代谢重编程来维持生存,但这往往引发资源分配冲突。例如,高温下光合产物优先用于热休克蛋白合成,导致抗病蛋白如Pi54稳定性下降50%[87]。同时,根系分泌物组分亦显著改变:在大气CO2浓度550×10-6环境下,根系分泌物中糖类增加30%,但抗菌有机酸减少40%,吸引镰刀菌等土传病原菌向根际聚集[74]

4 水稻病害应对策略

在气候变化日益加剧的背景下,水稻病害呈现出流行区域扩大、致病性增强和暴发频次升高等趋势,本文提出了3个典型的水稻病害应对策略(图3)。

图3

图3   水稻病害应对策略示意图

Fig. 3   Schematic diagram of strategies for dealing with rice diseases


4.1 分子标记辅助育种策略

相较于常规抗病育种周期长、适应性差等局限,构建以分子标记为核心的精准育种体系,已成为病害长期防控的关键路径。分子标记辅助选择(MAS)技术通过对目标抗病基因及其紧密连锁标记的筛选与聚合,能在幼苗期实现对植株抗病基因型的快速准确判定,缩短育种周期并提高效率。通过MAS技术,研究人员成功选育出携带 Pi54基因[123],以及Pi-taPi-bWx-mq基因型品种[124],在区域气候条件下表现出较强的稻瘟病抗性。当前研究已逐步从单一抗病基因选育向抗病基因聚合转变。针对气候变化下植株体生理生化防御的脆弱性,需多维度创新解决方案,通过整合遗传群体(F2)、基因型数据(SNP)和QTL定位(连锁图谱)技术,可实现抗病性状的高效解析与精准选育[125-126]

未来MAS将更多依赖高通量数据与基因编辑技术的结合。一方面,通过表达苯丙氨酸解氨酶、查尔酮合酶等关键基因,有效增强水稻体内的次生代谢产物合成能力,如酚类化合物、黄酮类物质和植保素等[121,127]。如转入PAL基因的水稻品种,对稻瘟病的抗性提高可达70%以上[128]。另一方面,可利用转录因子或信号调控元件(如OsNPR1-OsMYC2嵌合蛋白)实现SA与JA信号的兼顾与高效协调,避免激素拮抗现象,从而在高温或暴雨情境下维持系统性抗性[128]

在精准防控方面,利用纳米载体靶向递送SA前体,在极端天气(如暴雨或台风)来临前对水稻叶面进行喷施,可快速激活作物获得相应抗病性,显著提高免疫启动速度与应激应答能力[129]。基于SNP基因型数据的高通量分型技术,可构建高密度遗传图谱,精确解析群体基因型-表型关联。结合连锁图谱与抗病表型数据,如病斑面积、病原菌侵染率,可定位抗病相关遗传位点,并筛选侧翼分子标记[129]。可直接用于MAS,加速抗病基因的聚合,并指导气候适应型品种的选育,例如在高温高湿条件下仍维持抗性的水稻品系。将传统遗传学与现代基因组技术结合,为气候变化下水稻病害防控提供了精准育种路径。

4.2 水稻田间管理

4.2.1 健康土壤构建与营养调控

健康、稳定的土壤-植株-微生物生态系统是应对气候变化下水稻病害的重要基础屏障。

第一,优化土壤理化性质以抑制病原定殖。频繁高温和强降雨导致土壤酸化、板结加剧,促进如镰刀菌等病原菌定殖[130]。通过施用腐殖质、富硅生物炭等土壤改良剂,不仅可显著提升土壤团粒结构、改善水分保持力,还可调节根际pH和养分动态,有利于有益微生物群落的重建并降低病原菌活性[42,131]。Yang等[132]利用富硅生物炭调节土壤性质,可降低24%~58.2%籽粒二甲基苯胺酸积累,降低水稻青枯病发病率。

第二,科学调控养分供给,减弱病原营养基质。过量氮肥在提高水稻产量的同时,也显著促进了病原菌营养获取和增殖,抑制了宿主防御基因的表达。李烨锋等[133]研究表明,氮肥减少20%~40%并配施用硅肥显著降低稻曲病发生率和病情指数。吴天琦等[134]研究表明,施氮肥从334 kg/hm2减至167 kg/hm2时,纹枯病、稻曲病以及稻瘟病发病显著降低。

第三,促进有益微生物定殖,构建稳健根际微生物屏障。相较传统化学防控,根际微生物调控是绿色、可持续抑病的核心措施之一。枯草芽孢杆菌、解淀粉芽孢杆菌、荧光假单胞菌等益生菌株,具有定殖根际、竞争营养位点、分泌抗菌化合物及诱导水稻系统性抗性的多重功能;在气候波动加剧导致土壤环境剧烈变化的情境下,接种上述有益菌可有效抑制水稻纹枯病、稻瘟病以及褐斑病等[135-138]

4.2.2 农艺与耕作管理优化

合理的农艺与耕作制度调节田间小气候,是减轻病原压力、增强水稻抗性的有效手段。

水稻病害多集中于抽穗灌浆等关键生育期,适当调整播种期可有效错峰避开病害高发窗口,减少病原侵染概率。Zhu等[139]研究表明,随着播种期的推迟,移栽期与苗期灰飞虱的种群密度以及水稻条纹病毒病的发病率均显著降低,在浙江北部单季粳稻生产中,5月下旬至6月上旬是控制该类病毒病流行的最优播种时期。气候变暖下,水稻生长加快,个体对光、水和养分的竞争更加剧烈,高密度下群体旺长,削弱个体抗性[12,18]。高密度种植显著增加水稻稻瘟病和叶枯病的发生概率,进而引发产量损失,而适度稀植有助于提升田间通风透光性,缓解高温、高湿条件下的局部微气候胁迫[140-141]

通过调整耕作制度,如间作、轮作与免耕等多样化管理手段,可有效打破病害循环链条。翻耕深度10、20和30 cm处理中,以30 cm深度处理对于水稻叶瘟、穗颈瘟以及纹枯病发生率最低,侵染末期分别为75.67%、20.33%以及22.00%[142]。单一稻作制度易形成病原菌在田间的“年年循环”,其孢子可在稻草和土壤中越冬[17,24,68]。Ma等[130]研究表明,水稻和番茄轮作调节土壤pH值和总磷水平可有效应对水稻枯萎病;水稻与菠菜间作,可显著降低水稻纹枯病发病率17.3%~50.6%及叶折发病率5.1%~58.2%。

秸秆还田可促进有益微生物群落重建,从而增强土壤生态系统的病原抑制能力,长期秸秆还田能显著提高根际中拮抗微生物的比例,尤其是放线菌和芽孢杆菌类群,有效抑制了水稻霜霉病、根腐病等病害的发生频率[143-144]。另一方面,高温、高湿下若秸秆未充分腐解,易成为稻瘟病菌、镰刀菌等病原的滋生基质,诱发病害加重,因此应同步开展高温堆肥、翻耕灭菌及合理轮作,促进秸秆彻底腐熟与安全还田[143]

4.3 智能监测与预警系统建设

遥感技术以覆盖面广、历史数据积累丰富为显著优势,可支撑大尺度病害监测和气候-病害时空演变分析。利用高分辨率遥感卫星可定期获取大范围农田的多光谱影像,通过归一化植被指数(NDVI)、绿色归一化植被指数(GNDVI)以及归一化水体指数(NDWI)等植被与水分指数,能够在大范围内识别出高温、高湿或暴雨后叶面病斑的风险区域[145]

无人机搭载多光谱或高光谱相机,通过拍摄叶片病斑、冠层密度和三维结构,在病害早期即捕捉到细微变化,量化病斑面积与分布;同时,灵活的飞行时间和航线规划可针对极端天气前后进行精准复查,大幅提高了中观尺度的诊断精度[145]。Bai等[146]结合无人机遥感与积温数据建立的水稻白叶枯病疾病程度评价模型精度较高,复相关系数达0.86,均方根误差为0.65;Li等[147]通过无人机搭载高光谱遥感技术收集水稻作物的光谱数据,对稻瘟病识别总准确率和Kappa系数均达90%以上;Gu等[148]研究表明,位于15 m飞行高度的无人机搭载高光谱对水稻褐斑病诊断准确度最高,相关系数超过0.95;利用无人机搭载光谱仪采集,对稻曲病诊断总体分类精度达到了96.41%,Kappa系数可达到95%[149]

结合图像识别和人工智能算法,实现病害自动识别、定量评估和趋势判断,大幅提升监测效率和覆盖广度。利用来自图像变压器人工智能,可构建高精度水稻叶片病害识别系统,精度和F1值均达0.97,并通过LIME方法增强模型可解释性[150];Ramadan等[151]利用三种生成对抗网络(GAN)生成高质量合成图像,以扩充水稻叶片病害数据集,并结合先进的卷积神经网络(CNN)分类器进行检测,预测准确率达 98.54%;Yu等[152]构建了融合光谱特征的多模态深度学习模型(MMCG-MHA),通过1D与2D数据转换及多头注意机制,实现水稻纹枯病早期无症状检测,准确率达94.17%。

总体而言,建设智能监测与预警系统,能够实现对水稻病害的实时感知、动态分析与精准预测,尤其在人工智能高速发展的当下,应用前景广阔。

5 未来展望与研究结论

5.1 研究结论

本研究综述了气候变化对水稻病害发生与防控的影响及研究进展。结果表明,气候因子如温度升高、湿度变化、CO2以及O3浓度升高及极端气候事件,改变病原生长繁殖和传播方式,也影响水稻自身的抗病反应,整体上增加了病害暴发的风险。应对策略包括抗病基因利用、农艺与生态措施优化及综合防控手段。未来研究需加强对病原适应性演化、水稻防御机制及多学科融合防控体系的探索,为保障水稻生产与粮食安全提供理论与技术支撑。

5.2 当前研究的不足

已有研究在病原生态适应性、宿主抗性变化以及气候驱动机制等方面取得了初步进展。但综合当前国内外研究现状,仍存在以下亟待解决的关键问题。

首先,在理论机制层面,相关研究多聚焦于单一因子影响,缺乏对多因子交互作用过程的探究。当前尚未建立涵盖温湿度、大气成分(如CO2与O3)、降水剧烈波动与极端事件的系统性作用框架,较难准确解析对病原体生命周期、致病过程及传播路径的综合影响。其次,在数据支撑层面,现有研究多依赖受控条件下的实验室试验,缺乏对水稻病害发生的长期、大规模田间观测数据支持。受限于时间和空间尺度,尤其是不同气候背景下的区域性差异和跨季节变化,可能无法全面反映真实田间生态系统中病原-宿主-环境的动态变化。此外,在模型构建与技术应用方面,虽然气候变化背景下的病害预测模型逐步增多,但大多数现有模型基于静态的气候情景或短期数据,缺乏考虑长期气候变异、季节性差异及未来气候预测的动态调整。最后,当前大部分防控策略偏重于单一环节的应对,如抗病品种选育或农药应用,缺乏跨学科融合的系统性方案,未能充分考虑气候变化、作物生长、病原物种动态、土壤环境等多维度因素的交互作用,造成防控措施的局限性和灵活性不足,难以应对未来气候变化引发的多重复杂病害风险。

5.3 未来展望

未来研究应致力于构建数据驱动、模型支撑、技术集成、管理协同的综合防控体系。首先,应重点发展多因子耦合的病害响应机制研究框架,构建融合环境因素的高精度、多变量模拟模型。通过集成长期田间观测数据、高分辨率气候预测与机制试验结果,实现对病原体在不同气候情景下侵染力变化、传播周期调整与区域流行风险的定量化分析,为风险评估与前瞻性防控提供理论支撑。其次,建立区域化、多尺度的水稻病害智能监测与感知网络,形成气候与农田一体化数据获取体系。融合遥感影像、气象观测、农田传感器与AI算法,实现病害的实时监测、自动识别与动态预警。依托大数据与云平台,开发可视化病害风险评估系统,提升病害流行趋势的空间识别能力。

在防控策略层面,应构建以抗病品种选育、农艺措施优化和智能化管理为核心要素的协同应对体系。强化聚焦气候适应性和病害广谱抗性的水稻新品种培育,依托基因组选择、基因编辑等现代育种技术提升抗性遗传基础与稳定性;并结合不同气候风险区特征,优化栽培管理措施,如调整播期、合理密植、控水控氮等,从生态系统层面增强田间群体的综合抗逆能力。

最后,应加快推动数字农业技术在病害防控中的深度融合与场景应用。构建集成式病害智能识别终端、移动监测平台和云端决策支持系统,实现从数据采集、分析诊断到干预决策的全流程数字闭环。在此基础上推广可视化操作界面、自动施药系统与智能处方生成模块,降低化学防治强度,提升精准施策能力,推动病害防控向“减药增效、绿色可持续”方向转型。

参考文献

Ortiz-Bobea A, Ault T R, Carrillo C M, et al.

Anthropogenic climate change has slowed global agricultural productivity growth

[J]. Nature Climate Change, 2021, 11 (4): 306-312

[本文引用: 1]

周泽宇, 王君华, 曹颖.

全球适应气候变化行动进展评估及相关工作建议

[J]. 气候变化研究进展, 2024, 20 (6): 764-772.

[本文引用: 1]

Zhou Z Y, Wang J H, Cao Y.

Assessment of global climate change adaptation progress and related recommendations

[J]. Climate Change Research, 2024, 20 (6): 764-772 (in Chinese)

[本文引用: 1]

Cai S, Zhao X, Pittelkow C M, et al.

Optimal nitrogen rate strategy for sustainable rice production in China

[J]. Nature, 2023, 615 (7950): 73-79

[本文引用: 1]

Cassman K G, Grassini P.

A global perspective on sustainable intensification research

[J]. Nature Sustainability, 2020, 3 (4): 262-268

[本文引用: 1]

Jing L, Zhou N, Lai S, et al.

Interactions between elevated atmospheric CO2 and temperature on rice yield are highly dependent on growth season temperature

[J]. Field Crops Research, 2024, 307: 109270

[本文引用: 2]

Zhang J, Li Y, Yu Z, et al.

Elevated atmospheric CO2 and warming enhance the acquisition of soil-derived nitrogen rather than urea fertilizer by rice cultivars

[J]. Agricultural and Forest Meteorology, 2022, 324: 109117

Yuan M, Cai C, Wang X, et al.

Warm air temperatures increase photosynthetic acclimation to elevated CO2 concentrations in rice under field conditions

[J]. Field Crops Research, 2021, 262: 108036

Wang W, Yu Z, Zhang W, et al.

Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: historical simulation and future projections

[J]. Agricultural Water Management, 2014, 146: 249-261

[本文引用: 1]

Eseola A B, Ryder L S, Osés-Ruiz M, et al.

Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae

[J]. Fungal Genetics and Biology, 2021, 154: 103562

[本文引用: 2]

Savary S, Willocquet L, Pethybridge S J, et al.

The global burden of pathogens and pests on major food crops

[J]. Nature Ecology & Evolution, 2019, 3 (3): 430-439

[本文引用: 3]

Hunjan M S, Kamboj I, Lore J S, et al.

Expression of defense related enzymes in rice near isogenic lines IRBB4 and IRBB7 challenged with Xanthomonas oryzae pv. oryzae at elevated temperature

[J]. Indian Phytopathology, 2021, 74 (1): 33-43

[本文引用: 1]

Lee M, Lee S, Park J W, et al.

Prevalence of rice stripe virus can be altered by temperature and the virus-mediated development of insect vector, Laodelphax striatellus, in Korea

[J]. Journal of Asia-Pacific Entomology, 2017, 20 (4): 1145-1149

[本文引用: 2]

Li C, Yang W, Zhang Y, et al.

Investigation and characterization of rice dwarfing epidemic caused by southern rice black-streaked dwarf virus in Jiangsu in 2023

[J]. Virology, 2024, 593: 110027

[本文引用: 1]

姚彦坡, 朱永官, 褚海燕.

加强气候变化背景下植物病原真菌控制技术的创新和突破

[J]. 农业环境科学学报, 2024, 43 (3): 473-475.

[本文引用: 1]

Yao Y P, Zhu Y G, Chu H Y.

Strengthen the innovation and breakthrough of plant pathogenic fungi control technology in the context of climate change

[J]. Journal of Agro-Environment Science, 2024, 43 (3): 473-475 (in Chinese)

[本文引用: 1]

Pugliese M, Gilardi G, Garibaldi A, et al.

The impact of climate change on vegetable crop diseases and their management: the value of phytotron studies for the agricultural industry and associated stakeholders

[J]. Phytopathology, 2024, 114 (5): 843-854

Richard B, Qi A, Fitt B D L.

Control of crop diseases through integrated crop management to deliver climate-smart farming systems for low- and high-input crop production

[J]. Plant Pathology, 2022, 71 (1): 187-206

[本文引用: 1]

Waheed A, Haxim Y, Islam W, et al.

Climate change reshaping plant-fungal interaction

[J]. Environmental Research, 2023, 238: 117282

[本文引用: 5]

Azizi P, Rafii M Y, Abdullah S N A, et al.

Toward understanding of rice innate immunity against magnaporthe oryzae

[J]. Critical Reviews in Biotechnology, 2016, 36 (1): 165-174

DOI:10.3109/07388551.2014.946883      PMID:25198435      [本文引用: 2]

The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice.

张荣胜, 陈志谊, 刘永锋.

水稻细菌性条斑病菌遗传多样性和致病型分化研究

[J]. 中国水稻科学, 2011, 25 (5): 523-528.

[本文引用: 1]

Zhang R S, Chen Z Y, Liu Y F.

Genetic diversity and pathotype variability of xanthomans oryzae pv. oryzicola strains

[J]. Chinese Journal of Rice Science, 2011, 25 (5): 523-528 (in Chinese)

[本文引用: 1]

Feng Z, Ding X, Zhang H, et al.

Spectroscopic detection of wheat yellow mosaic virus infection based on invariant shape spectral processing and machine learning

[J]. Ecological Indicators, 2023, 154: 110750

[本文引用: 1]

Abraham A.

Synergistic crop virus disease complexes in Sub-Saharan Africa: causes, consequences and control

[J]. Phytoparasitica, 2024, 52 (1): 27

Pitt W J, Kairy L R, Mora V, et al.

Landscapes with higher crop diversity have lower aphid species richness but higher plant virus prevalence

[J]. Journal of Applied Ecology, 2024, 61 (7): 1573-1586

[本文引用: 1]

Fengmin Z, Zhenzhen C, Xin Z, et al.

Interaction between ustilaginoidea virens and rice and its sustainable control

[J]. Rice Science, 2024, 31 (3): 269-284

DOI:10.1016/j.rsci.2023.11.012      [本文引用: 1]

Ustilaginoidea virens is a common rice pathogen that can easily lead to a decline in rice quality and the production of toxins pose potential risks to human health. In this review, we present a comprehensive literature review of research since the discovery of rice false smut. We provide a comprehensive and, at times, critical overview of the main results and findings from related research, and propose future research directions. Firstly, we delve into the interaction between U. virens and rice, including the regulation of transcription factors, the process of U. virens infecting rice panicles, and the plant immune response caused by rice infection. Following that, we discuss the identification and characterization of mycotoxins produced by the pathogenic fungus, as well as strategies for disease management. We emphasize the importance of comprehensive agricultural prevention and control methods for the sustainable management of U. virens. This knowledge will update our understanding of the interaction between U. virens and rice plants, offering a valuable perspective for those interested in U. virens.

Dean R, van Kan J A L, Pretorius Z A, et al.

The top 10 fungal pathogens in molecular plant pathology

[J]. Molecular Plant Pathology, 2012, 13 (4): 414-30

DOI:10.1111/j.1364-3703.2011.00783.x      PMID:22471698      [本文引用: 4]

The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10.© 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

Ansari M M, Bisht N, Singh T, et al.

Bacillus amyloliquefaciens modulate autophagy pathways to control Rhizoctonia solani infection in rice

[J]. Plant Physiology and Biochemistry, 2025, 218: 109317

[本文引用: 1]

Sunani S K, Koti P S, Sunitha N C, et al.

Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense

[J]. Planta, 2024, 260 (4): 92

DOI:10.1007/s00425-024-04523-x      PMID:39261328      [本文引用: 1]

The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Chinnaiah S, Gautam S, Workneh F, et al.

First report of Sw-5 resistance-breaking strain of tomato spotted wilt virus (Orthotospovirus tomatomaculae) infecting tomato in Texas

[J]. Plant Disease, 2023, 107 (8): 2569

[本文引用: 1]

Yan H, Mi Y, Man Z, et al.

First report of leaf spot disease caused by Fusarium asiaticum on Lonicera caerulea L. in Heilongjiang province, China

[J]. Plant Disease, 2024

[本文引用: 1]

Mishra R, Zheng W, Joshi R K, et al.

Genome editing strategies towards enhancement of rice disease resistance

[J]. Rice Science, 2021, 28 (2): 133-145

DOI:10.1016/j.rsci.2021.01.003      [本文引用: 1]

The emerging pests and phytopathogens have reduced the crop yield and quality, which has threatened the global food security. Traditional breeding methods, molecular marker-based breeding approaches and use of genetically modified crops have played a crucial role in strengthening the food security worldwide. However, their usages in crop improvement have been highly limited due to multiple caveats. Genome editing tools like transcriptional activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 (CRISPR/Cas9) have effectively overcome limitations of the conventional breeding methods and are being widely accepted for improvement of crops. Among the genome editing tools, the CRISPR/Cas9 system has emerged as the most powerful tool of genome editing because of its efficiency, amicability, flexibility, low cost and adaptability. Accumulated evidences indicate that genome editing has great potential in improving the disease resistance in crop plants. In this review, we offered a brief introduction to the mechanisms of different genome editing systems and then discussed recent developments in CRISPR/Cas9 system-based genome editing towards enhancement of rice disease resistance by different strategies. This review also discussed the possible applications of recently developed genome editing approaches like CRISPR/Cas12a (formerly known as Cpf1) and base editors for enhancement of rice disease resistance.

张蕾. 气候变化背景下农作物病虫害的变化及区域动态预警研究[D]. 北京: 中国气象科学研究院, 2013.

[本文引用: 2]

Zhang L. Variation and regional dynamic warning of crop disease and pestsunder climate change[D]. Beijing: Chinese Academy of Meteorological Sciences, 2013 (in Chinese)

[本文引用: 2]

王丽, 霍治国, 张蕾, .

气候变化对中国农作物病害发生的影响

[J]. 生态学杂志, 2012, 31 (7): 1673-1684.

[本文引用: 1]

Wang L, Huo Z G, Zhang L, et al.

Effects of climate change on the occurrence of crop diseases in China

[J]. Chinese Journal of Ecology, 2012, 31 (7): 1673-1684 (in Chinese)

[本文引用: 1]

戚海迪, 张定海, 单立山, .

昆虫病原真菌感染昆虫宿主的机制和宿主昆虫的防御策略研究进展

[J]. 生物多样性, 2023, 31 (11): 226-239.

[本文引用: 1]

Qi H D, Zhang D H, Shan L S, et al.

Advances in the mechanisms of entomopathogenic fungi infecting insect hosts and the defense strategies of insects

[J]. Biodiversity Science, 2023, 31 (11): 226-239 (in Chinese)

[本文引用: 1]

Singh B K, Delgado-Baquerizo M, Egidi E, et al.

Climate change impacts on plant pathogens, food security and paths forward

[J]. Nature Reviews Microbiology, 2023, 21 (10): 640-656

DOI:10.1038/s41579-023-00900-7      PMID:37131070      [本文引用: 4]

Plant disease outbreaks pose significant risks to global food security and environmental sustainability worldwide, and result in the loss of primary productivity and biodiversity that negatively impact the environmental and socio-economic conditions of affected regions. Climate change further increases outbreak risks by altering pathogen evolution and host-pathogen interactions and facilitating the emergence of new pathogenic strains. Pathogen range can shift, increasing the spread of plant diseases in new areas. In this Review, we examine how plant disease pressures are likely to change under future climate scenarios and how these changes will relate to plant productivity in natural and agricultural ecosystems. We explore current and future impacts of climate change on pathogen biogeography, disease incidence and severity, and their effects on natural ecosystems, agriculture and food production. We propose that amendment of the current conceptual framework and incorporation of eco-evolutionary theories into research could improve our mechanistic understanding and prediction of pathogen spread in future climates, to mitigate the future risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with relevant intergovernmental organizations to provide effective monitoring and management of plant disease under future climate scenarios, to ensure long-term food and nutrient security and sustainability of natural ecosystems.© 2023. Springer Nature Limited.

Joshi M, Hawkins E, Sutton R, et al.

Projections of when temperature change will exceed 2℃ above pre-industrial levels

[J]. Nature Climate Change, 2011, 1 (8): 407-412

[本文引用: 1]

Agnew D C.

A global timekeeping problem postponed by global warming

[J]. Nature, 2024, 628 (8007): 333-336

[本文引用: 1]

Matić S, Garibaldi A, Gullino M L.

Combined and single effects of elevated CO2 and temperatures on rice bakanae disease under controlled conditions in phytotrons

[J]. Plant Pathology, 2021, 70 (4): 815-826

[本文引用: 2]

Du Y, Qi Z, Yu J, et al.

Effects of panicle development stage and temperature on rice panicle blast infection by Magnaporthe oryzae and visualization of its infection process

[J]. Plant Pathology, 2021, 70 (6): 1436-1444

[本文引用: 1]

Chen Q, Huang X, Chen X, et al.

Reversible activation of XA21-mediated resistance by temperature

[J]. European Journal of Plant Pathology, 2019, 153 (4): 1177-1184

DOI:10.1007/s10658-018-01634-6      [本文引用: 2]

The pattern recognition receptor XA21 confers developmentally-regulated resistance to bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae. Under normal conditions, XA21 plants are susceptible when inoculated 2weeks after germination and become fully resistant as they mature (after six-week-old). We report here that XA21-mediated resistance can be fully activated when the juvenile plants are grown at 27 degrees C under fluorescent light. Once transferred back to 31 degrees C under the same light intensity, XA21 seedlings lose the gained resistance. Temperature shift experiments indicate that high temperature treatment can suppress activated XA21 resistance. We also show that abundance of the XA21 protein is not significantly influenced by the temperature changes. These results highlight an interplay between development and temperature in this immune system. Full activation of resistance at juvenile stage will greatly facilitate the studies of XA21 immunity.

黄乾龙, 李贤勇, 欧阳杰, .

高温胁迫对抽穗扬花期水稻丙二醛含量和抗氧化酶活性的影响

[J]. 杂交水稻, 2025, 40 (1): 21-26.

[本文引用: 1]

Huang Q L, Li X Y, Ouyang J, et al.

Effects of high temperature stress on the MDA content and antioxidant enzyme activity of rice at heading and flowering stage

[J]. Hybrid Rice, 2025, 40 (1): 21-26 (in Chinese)

[本文引用: 1]

汪胜勇, 陈宇航, 陈会丽, .

水稻减数分裂期高温对苯丙烷类代谢及下游分支代谢途径的影响

[J]. 中国水稻科学, 2023, 37 (4): 368-378.

DOI:10.16819/j.1001-7216.2023.221112      [本文引用: 1]

【目的】 探究水稻减数分裂期高温如何影响苯丙烷类代谢,并分析其与水稻耐热性的关系。【方法】 以N22、广陆矮15、SDWG005、全两优681、Y两优900、Y两优1号、两优培九和绵恢101(MH101)等8种耐热和不耐热水稻品种为试验材料,设置常温和高温处理,分析减数分裂期高温胁迫对水稻的花粉活力与苯丙烷类代谢关键酶活性、木质素、总黄酮及总酚等主要代谢产物含量之间的相关性;并进一步选择极端耐高温的SDWG005和极端不耐高温的MH101为材料分析苯丙烷类代谢、碳水化合物代谢和抗氧化系统对水稻耐热性的影响。【结果】 1) 与对照相比,高温显著降低水稻花粉活力和颖花受精率,不同的水稻品种受高温影响后,花粉活力和颖花受精率的降幅不同。2) 高温显著增加颖花中肉桂酸-4-羟化酶和4-香豆酸辅酶A连接酶活性以及木质素、总黄酮和总酚的含量,且耐热品种增幅高于敏感品种。3) 高温下花粉活力与肉桂酸-4-羟化酶活性、木质素含量显著相关,颖花受精率与木质素含量以及木质素含量与类黄酮含量极显著相关。4) 与MH101相比,SDWG005小穗颖壳中木质素受高温显著诱导积累,且高温下能够维持较高细胞壁过氧化物酶活性。5) 与MH101相比,SDWG005颖花在高温下能够维持较高过氧化物酶、超氧化物歧化酶和抗坏血酸氧化酶活性,进而减少颖花中过氧化氢和丙二醛的积累。高温下SDWG005颖花中淀粉含量更高,酸性转化酶、蔗糖合酶及ATPase基因的表达量显著增加。【结论】 减数分裂期高温促进颖花中苯丙烷类代谢关键酶活性的上升和代谢产物含量的增加,耐热品种高温下能够积累较多的木质素和类黄酮,具有较高抗氧化酶活性,同时蔗糖代谢和能量产生效率较高,从而具有较强的耐热性。

Wang S Y, Chen Y H, Chen H L, et al.

Effects of high temperature on phenylpropane metabolism and downstream branch metabolic pathways in rice meiosis

[J]. Chinese Journal of Rice Science, 2023, 37 (4): 368-378 (in Chinese)

DOI:10.16819/j.1001-7216.2023.221112      [本文引用: 1]

【Objective】 Our purposes are to investigate how high temperature during rice meiosis affects phenylpropane metabolism and analyze its relationship with heat tolerance of rice. 【Methods】 Eight rice varieties differed in heat tolerance including N22, GLA15 (Guanglu’ai 15), SDWG005, QLY681 (Quanliangyou 681), YLY900 (Y Liangyou 900), YLY1 (Y Liangyou 1), LYP9 (Liangyoupeijiu), and MH101 (Mianhui 101) were used as experimental materials and exposed to room temperature and high temperature for 5 days. The correlations between activities of key enzymes in phenylpropane metabolism and main metabolite contents such as lignin, total flavonoids and total phenols were analyzed as well as the fertility of rice under high temperature stress during the meiotic stage. SDWG005 (heat resistant) and MH101 (heat sensitive) were used as experimental materials to analyze the effects of phenylpropane metabolism, carbohydrate metabolism and antioxidant defense system on heat tolerance of rice. 【Results】 1) Compared with the control, the pollen vitality and fertilization rate of spikelets decreased significantly to various extents at high temperature. 2) HT(high temperature) significantly increased the activities of cinnamate-4-hydroxylase and 4-coumaric acid coenzyme A ligase, as well as the accumulation of lignin, flavonoids and total phenols in spikelets, with resistant varieties registering a higher growth than sensitive ones. 3) Correlation analysis showed that in response to HT pollen activity was significantly correlated with cinnamate-4-hydroxylase activity and lignin content, spikelet fertility was significantly correlated with lignin content, and lignin content was significantly correlated with flavonoid content. 4) Compared with MH101, lignin accumulation in the glumes of SDWG005 was significantly induced under HT. And higher cell wall peroxidase activities were maintained in SDWG005 under HT. 5) Compared with MH101, SDWG005 could maintain higher antioxidant enzyme activities under HT, resulting in less accumulation of H2O2 and malondialdehyde. Under HT, the starch level in SDWG005 flowers was higher, and the expression levels of genes involved in acid invertase, sucrose synthase and ATPase were significantly upregulated. 【Conclusion】 High temperature stress increases the key enzyme activities and metabolite contents in the phenylpropanoid pathway in spikelets during the meiosis stage. The resistant variety accumulates more lignin and flavonoids during HT, has higher antioxidant enzyme activities, higher sucrose metabolism and energy utilization efficiency, thereby improving heat tolerance.

Qiu J, Xie J, Chen Y, et al.

Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice

[J]. Molecular Plant, 2022, 15 (4): 723-739

[本文引用: 4]

Eastburn D M, McElrone A J, Bilgin D D.

Influence of atmospheric and climatic change on plant-pathogen interactions

[J]. Plant Pathology, 2011, 60 (1): 54-69

[本文引用: 4]

江陵杰, 范鹏, 郭柯凡, .

水稻冠层温度研究进展

[J]. 江苏农业学报, 2020, 36 (1): 234-242.

[本文引用: 1]

Jiang L J, Fan P, Guo K F, et al.

Research progress on the factors affecting canopy temperature of rice

[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36 (1): 234-242 (in Chinese)

[本文引用: 1]

Chakraborty S, Newton A C.

Climate change, plant diseases and food security: an overview

[J]. Plant Pathology, 2011, 60 (1): 2-14

[本文引用: 2]

He D C, Zhan J, Cheng Z B, et al.

Viruliferous rate of small brown planthopper is a good indicator of rice stripe disease epidemics

[J]. Scientific Reports, 2016, 6 (1): 21376

[本文引用: 1]

Hwang S, Kim D.

Effect of temperature on rice stripe virus infection, transmission efficiency, and the development period in laodelphax striatellus

[J]. Entomological Research, 2025, 55 (2): e70021

[本文引用: 1]

Jia Q, Lv B, Guo M, et al.

Effect of rice growth stage, temperature, relative humidity and wetness duration on infection of rice panicles by Villosiclava virens

[J]. European Journal of Plant Pathology, 2015, 141 (1): 15-25

[本文引用: 1]

Song J H, Wang Y, Chen L Y, et al.

Higher relative humidity and more moderate temperatures increase the severity of rice false smut disease in the rice-crayfish coculture system

[J]. Food and Energy Security, 2022, 11 (1): e323

[本文引用: 1]

邱虎森, 甄博, 周新国.

高温对水稻根际细菌群落及功能代谢多样性的影响

[J]. 灌溉排水学报, 2020, 39 (11): 97-103.

[本文引用: 1]

Qiu H S, Zhen B, Zhou X G.

The effects of thermal stress on diversity of rhizobacteria and functional genes of rice rhizosphere

[J]. Journal of Irrigation and Drainage, 2020, 39 (11): 97-103 (in Chinese)

[本文引用: 1]

Jones R A C. Chapter three-future scenarios for plant virus pathogens as climate change progresses[M]//Kielian M, Maramorosch K, Mettenleiter T C. Advances in virus research. Academic Press, 2016: 87-147

[本文引用: 1]

Yamamura K, Yokozawa M.

Prediction of a geographical shift in the prevalence of rice stripe virus disease transmitted by the small brown planthopper, Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae), under global warming

[J]. Applied Entomology and Zoology, 2002, 37 (1): 181-90

[本文引用: 1]

赵梦, 欧阳芳, 张永生, .

2000—2010年我国水稻病虫害发生与为害特征分析

[J]. 生物灾害科学, 2014, 37 (4): 275-280.

[本文引用: 1]

Zhao M, Ouyang F, Zhang Y S, et al.

Characteristics of occurrence and damage from diseases and insect pests in rice production in China during 2000-2010

[J]. Biological Disaster Science, 2014, 37 (4): 275-280 (in Chinese)

[本文引用: 1]

沈建新, 董国堃, 张水妹, .

水稻细菌性条斑病发生流行与综防技术

[J]. 植物保护, 2002 (1): 33-34.

[本文引用: 1]

Shen J X, Dong G K, Zhang S M, et al.

Epidemic and comprehensive control technology of bacterial stripe spot disease in rice

[J]. Plant Protection, 2002 (1): 33-34 (in Chinese)

[本文引用: 1]

Macasero J B M, Castilla N P, Pangga I B, et al.

Influence of production situation on the incidence of brown spot of rice (Oryza sativa) caused by Bipolaris oryzae in the Philippines

[J]. Plant Pathology, 2024, 73 (2): 390-403

[本文引用: 1]

陈冰, 陈观浩, 江满桃, .

影响南方水稻黑条矮缩病发生流行的因子分析

[J]. 植物保护, 2016, 42 (2): 204-208, 24.

[本文引用: 1]

Chen B, Chen G H, Jiang M T, et al.

Factor analysis of epidemic of Southern rice black-streaked dwarf virus

[J]. Plant Protection, 2016, 42 (2): 204-208, 24 (in Chinese)

[本文引用: 1]

Naveenkumar R, Anandan A, Singh V, et al.

Deciphering environmental factors and defense response of rice genotypes against sheath blight disease

[J]. Physiological and Molecular Plant Pathology, 2022, 122: 101916

[本文引用: 1]

张国, 朱凤, 于居龙, .

2020年江苏省稻飞虱虫源地及暴发成因分析

[J]. 环境昆虫学报, 2022, 44 (3): 658-669.

[本文引用: 1]

Zhang G, Zhu F, Yu J Y, et al.

Source areas and outbreak reasons of rice planthoppers in Jiangsu province, 2020

[J]. Journal of Environmental Entomology, 2022, 44 (3): 658-669 (in Chinese)

[本文引用: 1]

颜松毅, 陈冰, 陈蔚烨, .

粤西地区南方水稻黑条矮缩病的流行规律及防治

[J]. 农学学报, 2017, 7 (10): 14-18.

DOI:10.11923/j.issn.2095-4050.cjas17050003      [本文引用: 1]

南方水稻黑条矮缩病为白背飞虱传播的一种毁灭性的水稻病毒病。文章根据2009~2016年化州地区南方水稻黑条矮缩病发生和危害情况,通过对南方水稻黑条矮缩病病害症状和介体昆虫的认识,分析南方水稻黑条矮缩病发生的轻重与介体数量、毒源量、水稻品种、种植方式、水稻播期、秧田位置及气候条件等因素有关。提出全面实施“防控技术前移,切断毒源,治虫防病”的防治策略;形成适合粤西稻区特点的南方水稻黑条矮缩病综合防控的技术体系,并在生产上推广应用,有效预防控制了南方水稻黑条矮缩病发生流行危害,取得了显著的社会经济效益。

Yan S Y, Chen B, Chen W Y, et al.

Southern rice black-streaked dwarf disease: the epidemic law and control in western Guangdong

[J]. Journal of Agriculture, 2017, 7 (10): 14-18 (in Chinese)

DOI:10.11923/j.issn.2095-4050.cjas17050003      [本文引用: 1]

Southern rice black-streaked dwarf virus (SRBSDV) is a kind of ruinous rice virus disease transmitted by the whitebacked planthopper. Basing on the occurrence and harm of SRBSDV in Huazhou district from 2009 to 2016, with recognization of the disease symptom and insect vector of SRBSDV, the essay analyzes that the severity of SRBSDV is related to vector numbers, viral source capacity, rice species, planting patterns, rice sowing period, seedling bed position and climate condition. The control strategy, which includes putting forward prevention and control technology, cutting off viral source, defending against insects, is proposed for comprehensive application. The synthetical preventing SRBSDV technical system which adapts to rice region in the western part of Guangdong province is implemented. The technical system is promoted and applied in production. With the measures above, the epidemic risks of SRBSDV can be prevented and controlled to obtain remarkable social and economic benefits.

Bailey-Serres J, Fukao T, Gibbs D J, et al.

Making sense of low oxygen sensing

[J]. Trends in Plant Science, 2012, 17 (3): 129-138

DOI:10.1016/j.tplants.2011.12.004      PMID:22280796      [本文引用: 2]

Plant-specific group VII Ethylene Response Factor (ERF) transcription factors have emerged as pivotal regulators of flooding and low oxygen responses. In rice (Oryza sativa), these proteins regulate contrasting strategies of flooding survival. Recent studies on Arabidopsis thaliana group VII ERFs show they are stabilized under hypoxia but destabilized under oxygen-replete conditions via the N-end rule pathway of targeted proteolysis. Oxygen-dependent sequestration at the plasma membrane maintains at least one of these proteins, RAP2.12, under normoxia. Remarkably, SUB1A, the rice group VII ERF that enables prolonged submergence tolerance, appears to evade oxygen-regulated N-end rule degradation. We propose that the turnover of group VII ERFs is of ecological relevance in wetland species and might be manipulated to improve flood tolerance of crops.Copyright © 2011 Elsevier Ltd. All rights reserved.

Li P, Tedersoo L, Crowther T W, et al.

Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100

[J]. Nature Food, 2023, 4 (11): 996-1006

[本文引用: 1]

Martínez-Arias C, Witzell J, Solla A, et al.

Beneficial and pathogenic plant-microbe interactions during flooding stress

[J]. Plant, Cell & Environment, 2022, 45 (10): 2875-2897

[本文引用: 1]

Huang X Q, Wen T, Zhang J B, et al.

Control of soil-borne pathogen Fusarium oxysporum by biological soil disinfestation with incorporation of various organic matters

[J]. European Journal of Plant Pathology, 2015, 143 (2): 223-235

[本文引用: 1]

Mohiddin F A, Majid R, Bhat A H, et al.

Molecular phylogeny, pathogenic variability and phytohormone production of Fusarium species associated with bakanae disease of rice in temperate agro-ecosystems

[J]. Molecular Biology Reports, 2021, 48 (4): 3173-3184

[本文引用: 1]

Mendes R, Garbeva P, Raaijmakers J M.

The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms

[J]. FEMS Microbiology Reviews, 2013, 37 (5): 634-643

DOI:10.1111/1574-6976.12028      PMID:23790204      [本文引用: 1]

Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protective microbial shield and to overcome the innate plant defense mechanisms in order to cause disease. A third group of microorganisms that can be found in the rhizosphere are the true and opportunistic human pathogenic bacteria, which can be carried on or in plant tissue and may cause disease when introduced into debilitated humans. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, for the vast majority of rhizosphere microorganisms no knowledge exists. To enhance plant growth and health, it is essential to know which microorganism is present in the rhizosphere microbiome and what they are doing. Here, we review the main functions of rhizosphere microorganisms and how they impact on health and disease. We discuss the mechanisms involved in the multitrophic interactions and chemical dialogues that occur in the rhizosphere. Finally, we highlight several strategies to redirect or reshape the rhizosphere microbiome in favor of microorganisms that are beneficial to plant growth and health. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

Raaijmakers J M, Paulitz T C, Steinberg C, et al.

The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms

[J]. Plant and Soil, 2009, 321 (1): 341-361

[本文引用: 1]

Fang Y, Xiong L.

General mechanisms of drought response and their application in drought resistance improvement in plants

[J]. Cellular and Molecular Life Sciences, 2015, 72 (4): 673-689

DOI:10.1007/s00018-014-1767-0      PMID:25336153      [本文引用: 3]

Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future.

朱书生, 黄惠川, 刘屹湘, .

农业生物多样性防控作物病害的研究进展

[J]. 植物保护学报, 2022, 49 (1): 42-57.

[本文引用: 1]

Zhu S S, Huang H C, Liu Y X, et al.

Research advances in agrobiodiversity for crop disease management

[J]. Journal of Plant Protection, 2022, 49 (1): 42-57 (in Chinese)

[本文引用: 1]

Sturrock R N, Frankel S J, Brown A V, et al.

Climate change and forest diseases

[J]. Plant Pathology, 2011, 60 (1): 133-149

[本文引用: 2]

Thomson L J, Macfadyen S, Hoffmann A A.

Predicting the effects of climate change on natural enemies of agricultural pests

[J]. Biological Control, 2010, 52 (3): 296-306

[本文引用: 1]

IPCC. Climate change 2021: The physical science basis[M]. Cambridge: Cambridge University Press, 2021

[本文引用: 1]

Roy S, Kapoor R, Mathur P.

Revisiting changes in growth, physiology and stress responses of plants under the effect of enhanced CO2 and temperature

[J]. Plant and Cell Physiology, 2024, 65 (1): 4-19

[本文引用: 1]

Dorneles K R, Refatti J P, Pazdiora P C, et al.

Biochemical defenses of rice against Bipolaris oryzae increase with high atmospheric concentration of CO2

[J]. Physiological and Molecular Plant Pathology, 2020, 110: 101484

[本文引用: 2]

Chen X, Ma J, Wang X, et al.

Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice

[J]. The Plant Journal, 2021, 108 (2): 330-346

DOI:10.1111/tpj.15427      PMID:34273211      [本文引用: 1]

Plant aquaporins are recently noted biological resource with a great potential to improve crop growth and defense traits. Here, we report functional modulation of Oryza sativa aquaporin OsPIP1;3 to enhance rice photosynthesis and grain production and to control bacterial blight and leaf streak, the most devastating world-wide bacterial diseases in the crop. We characterize OsPIP1;3 as a physiologically relevant CO -transporting facilitator, which supports 30% of rice photosynthesis on average. This role is nullified by OsPIP1;3 interaction with the bacterial protein Hpa1, an essential component of the type-III translocon that supports translocation of the bacterial type-III effectors PthXo1 and TALi into rice cells to induce leaf blight and streak, respectively. Hpa1 binding shifts OsPIP1;3 from CO transport to the effector translocation, aggravates bacterial virulence, but sacrifices rice photosynthesis. On the contrary, the external application of isolated Hpa1 to rice plants effectively prevents OsPIP1;3 from interaction with Hpa1 secreted by the bacteria that are infecting the plants. The inhibition of OsPIP1;3-Hpa1 interaction reverts OsPIP1;3 from the effector translocation to CO transport, abrogates bacterial virulence, and meanwhile induces defense responses in rice. These beneficial effects can combine to confer photosynthesis enhancement by 29-30%, bacterial disease reductions by 58-75%, and grain yield increase between 11% and 34%, in different rice varieties investigated in small-scale field trails implemented during the past years. Our results suggest that crop productivity and immunity can be coordinated by modulating physiological and pathological functions of a single aquaporin to break the growth-defense tradeoff barrier.This article is protected by copyright. All rights reserved.

Kumar U, Quick W P, Barrios M, et al.

Atmospheric CO2concentration effects on rice water use and biomass production

[J]. PLOS One, 2017, 12 (2): e0169706

[本文引用: 3]

Ye Z P, He J Q, An T, et al.

Influences of residual stomatal conductance on the intrinsic water use efficiency of two C3 and two C4 species

[J]. Agricultural Water Management, 2024, 306: 109136

崔景会, 王怡丹, 齐秀芬, .

水分胁迫和高浓度CO2处理下水稻幼苗光合生理响应特征

[J]. 生态学杂志, 2023, 42 (6): 1381-1388.

[本文引用: 1]

Cui J H, Wang Y D, Qi X F, et al.

Photosynthetic physiological response of rice seedlings to waterstress and high CO2 concentration

[J]. Chinese Journal of Ecology, 2023, 42 (6): 1381-1388 (in Chinese)

[本文引用: 1]

Kobayashi T, Ishiguro K, Nakajima T, et al.

Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight

[J]. Phytopathology, 2006, 96 (4): 425-431

DOI:10.1094/PHYTO-96-0425      PMID:18943425      [本文引用: 1]

The effect of elevated atmospheric CO(2) concentration on rice blast and sheath blight disease severity was studied in the field in northern Japan for 3 years. With free-air CO(2) enrichment (FACE), rice plants were grown in ambient and elevated ( approximately 200 to 280 mumol mol(-1) above ambient) CO(2) concentrations, and were artificially inoculated with consist of Magnaporthe oryzae. Rice plants grown in an elevated CO(2) concentration were more susceptible to leaf blast than those in ambient CO(2) as indicated by the increased number of leaf blast lesions. Plants grown under elevated CO(2) concentration had lower leaf silicon content, which may have contributed to the increased susceptibility to leaf blast under elevated CO(2) concentrations. In contrast to leaf blast, panicle blast severity was unchanged by the CO(2) enrichment under artificial inoculation, whereas it was slightly but significantly higher under elevated CO(2) concentrations in a spontaneous rice blast epidemic. For naturally occurring epidemics of the sheath blight development in rice plants, the percentage of diseased plants was higher under elevated as opposed to ambient CO(2) concentrations. However, the average height of lesions above the soil surface was similar between the treatments. One hypothesis is that the higher number of tillers observed under elevated CO(2) concentrations may have increased the chance for fungal sclerotia to adhere to the leaf sheath at the water surface. Consequently, the potential risks for infection of leaf blast and epidemics of sheath blight would increase in rice grown under elevated CO(2) concentration.

Goria M M, Ghini R, Bettiol W.

Elevated atmospheric CO2concentration increases rice blast severity

[J]. Tropical Plant Pathology, 2013, 38 (3): 253-257

[本文引用: 1]

唐美玲, 肖谋良, 袁红朝, .

CO2倍增条件下不同生育期水稻碳氮磷含量及其计量比特征

[J]. 环境科学, 2018, 39 (12): 5708-5716.

[本文引用: 1]

Tang M L, Xiao M L, Yuan H C, et al.

Effect of CO2 doubling and different plant growth stages on rice carbon, nitrogen, and phosphorus and their stoichiometric ratios

[J]. Environmental Science, 2018, 39 (12): 5708-5716 (in Chinese)

[本文引用: 1]

张立极, 潘根兴, 张旭辉, .

大气CO2浓度和温度升高对水稻植株碳氮吸收及分配的影响

[J]. 土壤, 2015, 47 (1): 26-32.

[本文引用: 1]

Zhang L J, Pan G X, Zhang X H, et al.

Effect of experimental CO2enrichment and warming on uptake and distribution of C and N in rice plant

[J]. Soils, 2015, 47 (1): 26-32 (in Chinese)

[本文引用: 1]

Dwivedi S K, Kumar S, Mishra J S, et al.

Interactive effect of elevated [CO2] and temperature on the photosynthetic process, anti-oxidative properties, and grain yield of rice

[J]. Journal of Agronomy and Crop Science, 2022, 208 (3): 384-393

[本文引用: 1]

da Rosa Dorneles K, Martins A C, Fernando J A, et al.

Increased atmospheric CO2 concentration causes modification of physiological, biochemical and histological characteristics that affects rice-Bipolaris oryzae interaction

[J]. European Journal of Plant Pathology, 2020, 157 (1): 29-38

DOI:10.1007/s10658-020-01972-4      [本文引用: 1]

The leaf anatomy, photosynthetic system parameters and accumulation of carbohydrates were determined at different times for Bipolaris oryzae pathogenesis in two rice cultivars (BRS Querencia and Inov CL), grown in an environment with 400 ppm or 700 ppm of atmospheric CO2. The results demonstrated that the plants exposed to 700 ppm underwent changes in anatomical characteristics (reduction in parenchyma thickness and size of bulliform cells), photosynthetic parameters (increased carbon assimilation rate, leaf intercellular CO2 concentration and water use efficiency, and reduction of stomatal conductance to water vapor, transpiration rate and carboxylation efficiency), and carbohydrate accumulation (increased concentration of soluble sugars and starch), when compared to plants at 400 ppm. Therefore, the changes in morphological traits of the leaf and the accumulation of carbohydrates, which were stimulated in the rice plants by increased CO2 concentration (700 ppm), were associated with less severe brown spot, caused by B. oryzae.

Roy S, Mathur P.

Delineating the mechanisms of elevated CO2mediated growth, stress tolerance and phytohormonal regulation in plants

[J]. Plant Cell Reports, 2021, 40 (8): 1345-1365

[本文引用: 2]

卢培利, 杨涵, 丁阿强, .

碳源与氮源限制下细菌代谢调节研究进展

[J]. 微生物学报, 2023, 63 (3): 946-962.

Lu P L, Yang H, Ding A Q, et al.

Metabolic regulation of bacteria with limited carbon and nitrogen sources

[J]. Acta Microbiologica Sinica, 2023, 63 (3): 946-962 (in Chinese)

陈宏艳, 李小二, 李忠光.

糖信号及其在植物响应逆境胁迫中的作用

[J]. 生物技术通报, 2022, 38 (7): 80-89.

DOI:10.13560/j.cnki.biotech.bull.1985.2021-1289      [本文引用: 1]

糖不仅是植物细胞的碳源、能源和结构物质,也是一种信号分子,在植物生长发育及响应逆境胁迫中起重要作用。非生物逆境如高温、低温、干旱、盐渍和重金属胁迫是限制作物产量的主要胁迫因子,糖作为信号分子在植物响应这些胁迫因子中的确切机理,尚未清楚。基于植物中糖信号转导途径及其在植物耐逆性形成中作用的最新研究进展,归纳了植物中分别依赖己糖激酶(HXK)、G蛋白信号1调节子(RGS1)、糖酵解(EMP)和磷酸戊糖途径(PPP)的糖信号转导途径,讨论了糖信号在植物耐逆性包括耐热性、耐冷性、耐旱性、耐盐性和重金属胁迫耐性形成中的作用,最后展望了糖信号在植物生物学领域的研究方向。

Chen H Y, Li X E, Li Z G.

Sugar signaling and its role in plant response to environmental stress

[J]. Biotechnology Bulletin, 2022, 38 (7): 80-89 (in Chinese)

[本文引用: 1]

Wu X, Ding C, Baerson S R, et al.

The roles of jasmonate signalling in nitrogen uptake and allocation in rice (Oryza sativa L.)

[J]. Plant, Cell & Environment, 2019, 42 (2): 659-672

[本文引用: 1]

Li X K, Huang Y H, Zhao R, et al.

Membrane protein MHZ3 regulates the on-off switch of ethylene signaling in rice

[J]. Nature Communications, 2024, 15 (1): 5987

[本文引用: 2]

Cao S, Wang Y, Gao Y, et al.

The RLCK-VND6 module coordinates secondary cell wall formation and adaptive growth in rice

[J]. Molecular Plant, 2023, 16 (6): 999-1015

[本文引用: 1]

Ellsworth P V, Ellsworth P Z, Koteyeva N K, et al.

Cell wall properties in Oryza sativa influence mesophyll CO2 conductance

[J]. New Phytologist, 2018, 219 (1): 66-76

DOI:10.1111/nph.15173      PMID:29676468      [本文引用: 1]

Diffusion of CO from the leaf intercellular air space to the site of carboxylation (g ) is a potential trait for increasing net rates of CO assimilation (A ), photosynthetic efficiency, and crop productivity. Leaf anatomy plays a key role in this process; however, there are few investigations into how cell wall properties impact g and A. Online carbon isotope discrimination was used to determine g and A in Oryza sativa wild-type (WT) plants and mutants with disruptions in cell wall mixed-linkage glucan (MLG) production (CslF6 knockouts) under high- and low-light growth conditions. Cell wall thickness (T ), surface area of chloroplast exposed to intercellular air spaces (S ), leaf dry mass per area (LMA), effective porosity, and other leaf anatomical traits were also analyzed. The g of CslF6 mutants decreased by 83% relative to the WT, with c. 28% of the reduction in g explained by S. Although A /LMA and A /Chl partially explained differences in A between genotypes, the change in cell wall properties influenced the diffusivity and availability of CO. The data presented here indicate that the loss of MLG in CslF6 plants had an impact on g and demonstrate the importance of cell wall effective porosity and liquid path length on g.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

胡安琪, 谢晓栋, 龚康佳, .

气候变化对中国夏季臭氧影响

[J]. 环境科学, 2023, 44 (4): 1801-1810.

[本文引用: 1]

Hu A Q, Xie X D, Gong K J, et al.

Impact of climate change on summer ozone in China

[J]. Environmental Science, 2023, 44 (4): 1801-1810 (in Chinese)

[本文引用: 1]

Barnes P W, Williamson C E, Lucas R M, et al.

Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future

[J]. Nature Sustainability, 2019, 2 (7): 569-579

DOI:10.1038/s41893-019-0314-2     

Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth's surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.

Fu T M, Tian H.

Climate change penalty to ozone air quality: review of current understandings and knowledge gaps

[J]. Current Pollution Reports, 2019, 5 (3): 159-171

[本文引用: 1]

王志彬, 傅杨, 乔晓军, .

臭氧植保机在设施蔬菜苗期病害防治中的应用研究

[J]. 中国农机化学报, 2023, 44 (7): 55-62.

[本文引用: 1]

Wang Z B, Fu Y, Qiao X J, et al.

Application of ozone sterilizer devices for controlling vegetable diseases during seeding stages in greenhouse

[J]. Journal of Chinese Agricultural Mechanization, 2023, 44 (7): 55-62 (in Chinese)

DOI:10.13733/j.jcam.issn.2095-5553.2023.07.008      [本文引用: 1]

In order to explore the efficacy of a new type of ozone sterilizer device in controlling vegetable seedling diseases and its impact on the growth of vegetables, experiments on disease control were conducted in greenhouses using tomato leaf mold, cucumber powdery mildew, and cabbage dampingoff as test subjects. In one of the greenhouses, the ozone plant protection machine was suspended from the greenhouse ceiling and used highvoltage discharge to generate ozone, which was then rapidly diffused throughout the facility using a highspeed fan and special air duct. The machine can be controlled remotely for realtime adjustment of ozone release, and its operation status can be constantly monitored using a mobile app. Thus, the ozone concentration in a facility can be dynamically adjusted to better control vegetable diseases. Compared with conventionally managed greenhouses without disease control measures, the incidence rates of tomato leaf mold, cucumber powdery mildew, and cabbage dampingoff in the greenhouse with the installed multifunctional plant protection machine were controlled at 5.2%, 4.7%, and 17.4%, which is 12.2%, 9.8%, and 1.8% lower, respectively, than the incidence rates in the conventionally managed greenhouse. The results showed that ozone had favorable control effects on tomato leaf mold and cucumber powdery mildew and showed certain control effects on cabbage dampingoff. Moreover, the ozone had no adverse effects on the normal growth of the vegetables. These data provide a reference for the wide use of ozone to control vegetable diseases in greenhouses.

Wilkinson S, Davies W J.

Drought, ozone, ABA and ethylene: new insights from cell to plant to community

[J]. Plant, Cell & Environment, 2010, 33 (4): 510-525

[本文引用: 1]

常浩, 姬明飞, 牟明, .

臭氧对水稻恶苗病菌的抑制作用

[J]. 安徽农业科学, 2016, 44 (35): 157-158, 201.

[本文引用: 1]

Chang H, Ji M F, Mou M, et al.

Inhibition effect of ozone on fusarium moniliforme

[J]. Journal of Anhui Agricultural Sciences, 2016, 44 (35): 157-158, 201 (in Chinese)

[本文引用: 1]

姚洪军, 于深州, 付立东, .

臭氧功能水对水稻病害的防治效果及产量影响

[J]. 北方水稻, 2017, 47 (4): 9-11.

[本文引用: 1]

Yao H J, Yu S Z, Fu L D, et al.

Effects of ozone water on rice diseases and yield

[J]. Northern Rice, 2017, 47 (4): 9-11 (in Chinese)

[本文引用: 1]

列淦文, 叶龙华, 薛立.

臭氧胁迫对植物主要生理功能的影响

[J]. 生态学报, 2014, 34 (2): 294-306.

[本文引用: 1]

Lie G W, Ye L H, Xue L.

Effects of ozone stress on major plant physiological functions

[J]. Acta Ecologica Sinica, 2014, 34 (2): 294-306 (in Chinese)

[本文引用: 1]

Wedow J M, Ainsworth E A, Li S.

Plant biochemistry influences tropospheric ozone formation, destruction, deposition, and response

[J]. Trends in Biochemical Sciences, 2021, 46 (12): 992-1002

DOI:10.1016/j.tibs.2021.06.007      PMID:34303585      [本文引用: 3]

Tropospheric ozone (O) is among the most damaging air pollutant to plants. Plants alter the atmospheric O concentration in two distinct ways: (i) by the emission of volatile organic compounds (VOCs) that are precursors of O and (ii) by dry deposition, which includes diffusion of O into vegetation through stomata and destruction by nonstomatal pathways. Isoprene, monoterpenes, and higher terpenoids are emitted by plants in quantities that alter tropospheric O. Deposition of O into vegetation is related to stomatal conductance, leaf structural traits, and the detoxification capacity of the apoplast. The biochemical fate of O once it enters leaves and reacts with aqueous surfaces is largely unknown, but new techniques for the tracking and identification of initial products have the potential to open the black box.Published by Elsevier Ltd.

Alam M S, Maina A W, Feng Y, et al.

Interactive effects of tropospheric ozone and blast disease (Magnaporthe oryzae) on different rice genotypes

[J]. Environmental Science and Pollution Research, 2022, 29 (32): 48893-48907

[本文引用: 2]

Krupa S, McGrath M T, Andersen C P, et al.

Ambient ozone and plant health

[J]. Plant Disease, 2001, 85 (1): 4-12

DOI:10.1094/PDIS.2001.85.1.4      PMID:30832068      [本文引用: 1]

何龙鑫, 徐彦森, 冯兆忠, .

不同水稻品种光合特性及叶绿素对臭氧浓度升高的响应差异

[J]. 农业环境科学学报, 2023, 42 (4): 715-723.

[本文引用: 1]

He L X, Xu Y S, Feng Z Z, et al.

Different responses to elevated ozone among cultivars in the photosynthetic characteristics and chlorophyll of rice

[J]. Journal of Agro-Environment Science, 2023, 42 (4): 715-723 (in Chinese)

[本文引用: 1]

Frei M.

Breeding of ozone resistant rice: relevance, approaches and challenges

[J]. Environmental Pollution, 2015, 197: 144-155

DOI:S0269-7491(14)00511-9      PMID:25528448      [本文引用: 1]

Tropospheric ozone concentrations have been rising across Asia, and will continue to rise during the 21st century. Ozone affects rice yields through reductions in spikelet number, spikelet fertility, and grain size. Moreover, ozone leads to changes in rice grain and straw quality. Therefore the breeding of ozone tolerant rice varieties is warranted. The mapping of quantitative trait loci (QTL) using bi-parental populations identified several tolerance QTL mitigating symptom formation, grain yield losses, or the degradation of straw quality. A genome-wide association study (GWAS) demonstrated substantial natural genotypic variation in ozone tolerance in rice, and revealed that the genetic architecture of ozone tolerance in rice is dominated by multiple medium and small effect loci. Transgenic approaches targeting tolerance mechanisms such as antioxidant capacity are also discussed. It is concluded that the breeding of ozone tolerant rice can contribute substantially to the global food security, and is feasible using different breeding approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

Merilo E, Laanemets K, Hu H, et al.

PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation

[J]. Plant Physiology, 2013, 162 (3): 1652-1668

DOI:10.1104/pp.113.220608      PMID:23703845      [本文引用: 1]

Rapid stomatal closure induced by changes in the environment, such as elevation of CO2, reduction of air humidity, darkness, and pulses of the air pollutant ozone (O3), involves the SLOW ANION CHANNEL1 (SLAC1). SLAC1 is activated by OPEN STOMATA1 (OST1) and Ca(2+)-dependent protein kinases. OST1 activation is controlled through abscisic acid (ABA)-induced inhibition of type 2 protein phosphatases (PP2C) by PYRABACTIN RESISTANCE/REGULATORY COMPONENTS OF ABA RECEPTOR (PYR/RCAR) receptor proteins. To address the role of signaling through PYR/RCARs for whole-plant steady-state stomatal conductance and stomatal closure induced by environmental factors, we used a set of Arabidopsis (Arabidopsis thaliana) mutants defective in ABA metabolism/signaling. The stomatal conductance values varied severalfold among the studied mutants, indicating that basal ABA signaling through PYR/RCAR receptors plays a fundamental role in controlling whole-plant water loss through stomata. PYR/RCAR-dependent inhibition of PP2Cs was clearly required for rapid stomatal regulation in response to darkness, reduced air humidity, and O3. Furthermore, PYR/RCAR proteins seem to function in a dose-dependent manner, and there is a functional diversity among them. Although a rapid stomatal response to elevated CO2 was evident in all but slac1 and ost1 mutants, the bicarbonate-induced activation of S-type anion channels was reduced in the dominant active PP2C mutants abi1-1 and abi2-1. Further experiments with a wider range of CO2 concentrations and analyses of stomatal response kinetics suggested that the ABA signalosome partially affects the CO2-induced stomatal response. Thus, we show that PYR/RCAR receptors play an important role for the whole-plant stomatal adjustments and responses to low humidity, darkness, and O3 and are involved in responses to elevated CO2.

郭洪刚, 王世藩, 戈峰.

植物激素信号调控的“植物病毒-植物-媒介昆虫”三者互作对温室气体变化的响应

[J]. 中国科学:生命科学, 2017, 47 (9): 928-935.

[本文引用: 1]

Guo H G, Wang S P, Ge F.

Effect of elevated CO2 and O3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses

[J]. Scientia Sinica (Vitae), 2017, 47 (9): 928-935 (in Chinese)

[本文引用: 1]

鲍歆歆, 周伟奇, 郑重, .

城市植物挥发性有机化合物排放与臭氧相互作用及其机制

[J]. 生态学报, 2023, 43 (5): 1749-1762.

[本文引用: 1]

Bao X X, Zhou W Q, Zheng Z, et al.

The interactions and mechanisms between biogenic volatile organic compounds emissions and ozone concentrations in urban areas: a review

[J]. Acta Ecologica Sinica, 2023, 43 (5): 1749-1762 (in Chinese)

[本文引用: 1]

冯兆忠, 袁相洋.

臭氧浓度升高对植物源挥发性有机化合物 (BVOCs) 影响的研究进展

[J]. 环境科学, 2018, 39 (11): 5257-5265.

[本文引用: 1]

Feng Z Z, Yuan X Y.

Effects of elevated ozone on Biogenic Volatile Organic Compounds (BVOCs) emission: a review

[J]. Environmental Science, 2018, 39 (11): 5257-5265 (in Chinese)

[本文引用: 1]

Helliwell E E, Wang Q, Yang Y.

Ethylene biosynthesis and signaling is required for rice immune response and basal resistance against magnaporthe oryzae infection

[J]. Molecular Plant-Microbe Interactions, 2016, 29 (11): 831-843

PMID:27671120      [本文引用: 1]

Recent studies have suggested that ethylene enhances host resistance to fungal pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Among the six 1-aminocyclopropane-1-carboxylic acid synthase genes in rice, OsACS1 and OsACS2 are induced within 24 h of inoculation by M. oryzae. This induction occurs simultaneously with an increase in ethylene production that is noticeable 12 h postinoculation. The purpose of this study was to examine the dynamics of ethylene production and signaling in wild type and RNA interference-mediated suppression lines deficient in ethylene production (acs2) or signaling (eil1) after challenge with M. oryzae as well as fungal cell-wall elicitors. Ethylene-insensitive mutant lines show an attenuated basal defense response including lower basal expression of the genes encoding a chitin-binding receptor, pathogenesis-related (PR) proteins, and the enzymes involved in the synthesis of diterprenoid phytoalexins, a reduction on early hypersensitive response (HR)-like cell death, and reduced incidence of callose deposition. Ethylene-deficient mutants showed an intermediate phenotype, with a significant reduction in expression of defense-related genes and callose deposition, but only a slight reduction in HR-like cell death. As a result, all ethylene-insensitive mutants show increased susceptibility to M. oryzae, whereas the ethylene-deficient lines show a slight but less significant increase in disease severity. These results show that ethylene signaling and, to some extent, ethylene production are required for rice basal resistance against the blast fungus Magnaporthe oryzae.

葛少彬, 刘敏, 骆世明, .

硅和稻瘟病菌接种对水稻植株有机酸含量的影响

[J]. 生态学杂志, 2014, 33 (11): 3002-3009.

[本文引用: 1]

以抗病性不同的一对水稻近等基因系——感病CO39和抗病C101LACPi-1)为实验材料,在水培条件下研究了施硅和稻瘟病接菌对水稻根系和叶片抗性物质有机酸含量的影响,揭示硅提高水稻对稻瘟病抗性的机理。结果表明:接菌条件下硅处理显著降低了2个基因型材料的叶片反丁烯二酸、柠檬酸的含量,而增加了叶片中草酸、顺丁烯二酸的含量;加硅显著降低接菌后第3天的CO39叶片酒石酸含量,但增加了C101LAC(Pi-1)接菌后第7天的叶片酒石酸含量;硅处理还显著增加了根系中苹果酸和草酸的含量;各种有机酸在水稻植株体内的分布也不尽相同,如柠檬酸主要分布在叶片中,苹果酸主要分布在根系中,顺丁烯二酸、反丁烯二酸、酒石酸和草酸在叶片和根系中都有分布。研究表明,硅可能通过影响植株体内的有机酸代谢而增强稻瘟病的抗性。

Ge S B, Liu M, Luo S M, et al.

Influence of silicon application and Magnaporthe oryzae infection on organic acids contents in rice plants

[J]. Chinese Journal of Ecology, 2014, 33 (11): 3002-3009 (in Chinese)

[本文引用: 1]

刘明津, 汪文娟, 冯爱卿, .

稻瘟病综合防控技术研究进展

[J]. 西北农业学报, 2020, 29 (9): 1285-1294.

[本文引用: 1]

Liu M J, Wang W J, Feng A Q, et al.

Advance of integrated control technology of rice blast

[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29 (9): 1285-1294 (in Chinese)

[本文引用: 1]

Patharkar O R, Walker J C.

Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence

[J]. Plant Science, 2019, 284: 25-29

DOI:S0168-9452(18)31020-3      PMID:31084875      [本文引用: 1]

This review focuses on relationships between the abscission process (organ shedding) and other related processes like shattering, senescence, pathogen defense, and drought stress with emphasis on how the relationships might be exploited to advance their respective fields. Shared molecular components provide a means for cross-talk between processes as well as a means for knowledge transfer between fields. The review briefly covers how fundamental abscission molecular mechanisms can be used for crop improvement. We cover seed abscission and shattering in rice, cereals, and beans as well as abscission in Arabidopsis and tomato. The review provides a set of five guidelines that can be used to direct future cell separation research. Finally, we give our perspective on methods and technologies that are likely to advance the abscission field.Copyright © 2019 Elsevier B.V. All rights reserved.

Ye T, Wang H, An C, et al.

An expanded cysteine-rich receptor-like kinase gene cluster functionally differentiates in drought, cold, heat, and pathogen stress responses in rice

[J]. Plant Biotechnology Journal, 2024, 22 (10): 2672-2674

[本文引用: 1]

Meher J, Lenka S, Keerthana U, et al.

Intermittent drought adversely impacts monogenic resistance of rice to the blast pathogen Magnaporthe oryzae and is associated with alteration in histone acetylation

[J]. Plant and Soil, 2025, 509 (1): 649-669

[本文引用: 1]

韦还和, 马唯一, 左博源, .

盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展

[J]. 中国水稻科学, 2024, 38 (4): 350-363.

DOI:10.16819/j.1001-7216.2024.240205      [本文引用: 1]

滨海盐碱地水稻生产受限于淡水资源和水利基础设施,盐害和干旱往往交织出现,极易遭受盐−旱复合胁迫,严重制约了滨海盐碱地水稻丰产优质目标的实现。全面剖析盐、干旱胁迫及其复合胁迫对水稻产量和品质形成的影响及其生理机制,可为滨海盐碱地水稻高产与品质调优栽培提供科学支撑。本文概述了盐、干旱及其复合胁迫对水稻生长发育、产量形成和稻米品质的影响,从渗透调节、离子平衡、光合作用、抗氧化酶系统、内源激素、蔗糖-淀粉代谢关键酶活性和分子机制等方面阐述其影响水稻产量和品质形成的作用机制,从耐盐耐旱品种选育及栽培调控等方面提出了减轻水稻盐/干旱胁迫的调控措施,为今后深入开展水稻耐盐和干旱的研究提出建议。

Wei H H, Ma W Y, Zuo B Y, et al.

Research progress in the effect of salinity, drought, and their combined stresses on rice yield and quality formation

[J]. Chinese Journal of Rice Science, 2024, 38 (4): 350-363 (in Chinese)

DOI:10.16819/j.1001-7216.2024.240205      [本文引用: 1]

The production of rice in coastal saline-alkali lands is constrained by limited freshwater resources and water infrastructure. The presence of salinity damage and drought, often occurring together, renders rice production in these areas highly susceptible to combined salinity-drought stress, significantly impeding the attainment of high yield and quality in rice in coastal saline-alkali lands. A comprehensive analysis of the impacts of salinity damage, drought, and their combined stresses on rice yield and quality formation, along with their physiological mechanisms, can offer scientific backing for optimizing high-yield and quality rice cultivation in coastal saline-alkali lands. This article presents an overview of the effects of salinity damage, drought, and their combined stresses on the growth, development, yield formation, and grain quality of rice. The mechanisms underlying their influence on rice yield and quality formation are elucidated, focusing on osmotic regulation, ion balance, photosynthetic functions, antioxidant enzyme systems, endogenous hormones, key enzyme activities related to sucrose-starch metabolism, and molecular mechanisms. Recommendations are provided for the selection of salinity- and drought-tolerant varieties, as well as cultivation practices to mitigate salinity and drought stress in rice. Lastly, suggestions are proposed for further research on salinity and drought stress in rice.

张启辉, 李晓曼, 龙希洋, .

植物角质蜡质代谢及抗病机制研究

[J]. 浙江农林大学学报, 2020, 37 (6): 1207-1215.

[本文引用: 1]

Zhang Q H, Li X M, Long X Y, et al.

Metabolism of the cutin and wax of plants and their diseaseresistance mechanisms

[J]. Journal of Zhejiang A&F University, 2020, 37 (6): 1207-1215 (in Chinese)

[本文引用: 1]

王莎, 贺勇, 罗光宇, .

OsWR2-RNAi对水稻角质层生物合成和耐旱性的影响

[J]. 作物学报, 2017, 43 (3): 315-323.

[本文引用: 1]

Wang S, He Y, Luo G Y, et al.

Influence of OsWR2-RNAi on rice cuticle biosynthesis and drought resistance

[J]. Acta Agronomica Sinica, 2017, 43 (3): 315-323 (in Chinese)

[本文引用: 1]

周玲艳, 姜大刚, 李静, .

逆境处理下水稻叶角质层蜡质积累及其与蜡质合成相关基因OsGL1表达的关系

[J]. 作物学报, 2012, 38 (6): 1115-1120.

[本文引用: 1]

Zhou L Y, Jiang D G, Li J, et al.

Effect of stresses on leaf cuticular wax accumulation and its relationship to expression of OsGL1-homologous genes in rice

[J]. Acta Agronomica Sinica, 2012, 38 (6): 1115-1120 (in Chinese)

[本文引用: 1]

郭展, 张运波.

水稻对干旱胁迫的生理生化响应及分子调控研究进展

[J]. 中国水稻科学, 2024, 38 (4): 335-349.

DOI:10.16819/j.1001-7216.2024.230410      [本文引用: 1]

水稻是全球最重要的粮食作物之一,其生长过程需要大量水分。随着全球气候变暖,干旱成为其产量的重要限制因素。因此,本文结合近些年的研究成果从形态(根系和地上部)、生理(气孔、蒸腾作用、光合作用和水分利用率)、生化(植物激素、脯氨酸等渗透调节剂和抗氧化剂)及分子水平(抗旱基因的表达水平)综述了水稻在干旱胁迫下的自我保护机制,可为全面了解水稻抗旱机制和选育抗旱品种提供参考。

Guo Z, Zhang Y B.

Research progress in physiological, biochemical responses of rice to drought stress and its molecular regulation

[J]. Chinese Journal of Rice Science, 2024, 38 (4): 335-349 (in Chinese)

DOI:10.16819/j.1001-7216.2024.230410      [本文引用: 1]

Rice is one of the most important food crops globally, and its growth requires more water than many other crops. With global warming, drought has emerged as the main factor limiting crop yields. Therefore, based on recent research achievements, this paper summarizes the self-protection mechanisms of rice under drought stress. This includes aspects such as morphology (plant height, roots, leaves, number of tillers, and plant biomass), physiology (stomata, transpiration, photosynthesis, and water use efficiency), biochemistry (plant hormones, proline, other osmotic regulators, and antioxidants), and molecular biology (expression levels of drought resistance genes). The aim is to comprehensively understand rice's drought resistance mechanisms and provide a reference for breeding drought-resistant varieties

Tang M, Ning Y, Shu X, et al.

The Nup98 homolog APIP12 targeted by the effector avrPiz-t is involved in rice basal resistance against magnaporthe oryzae

[J]. Rice, 2017, 10 (1): 5

[本文引用: 1]

Pitaloka M K, Harrison E L, Hepworth C, et al.

Rice stomatal mega-papillae restrict water loss and pathogen entry

[J]. Frontiers in Plant Science, 2021, 12: 677839-677839

[本文引用: 1]

Liu J, Lefevere H, Coussement L, et al.

The phenylalanine ammonia-lyase inhibitor AIP induces rice defence against the root-knot nematode Meloidogyne graminicola

[J]. Molecular Plant Pathology, 2024, 25 (1): e13424

[本文引用: 1]

Ahmad S, Jeridi M, Siddiqui S, et al.

Genome-wide identification, characterization, and expression analysis of the chalcone synthase gene family in oryza sativa under abiotic stresses

[J]. Plant Stress, 2023, 9: 100201

[本文引用: 2]

Xu G, Zhong X, Shi Y, et al.

A fungal effector targets a heat shock-dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity

[J]. Science Advances, 6 (48): eabb7719

[本文引用: 1]

Madhusudhan P, Sinha P, Rajput L S, et al.

Effect of temperature on Pi54-mediated leaf blast resistance in rice

[J]. World Journal of Microbiology and Biotechnology, 2019, 35 (10): 148

[本文引用: 1]

姚姝, 陈涛, 张亚东, .

利用分子标记辅助选择聚合水稻Pi-taPi-bWx-mq基因

[J]. 作物学报, 2017, 43 (11): 1622-1631.

DOI:10.3724/SP.J.1006.2017.01622      [本文引用: 1]

近年来,优良食味粳稻品种南粳46、南粳5055和南粳9108在江苏等地大面积推广,促进了优质稻米产业的发展。但这些品种均不抗稻瘟病,且缺乏适合在淮北地区种植的中熟中粳型优良食味粳稻品种。本研究以同时携带稻瘟病抗性基因Pi-ta和Pi-b的江苏抗病、高产粳稻品种武粳15为母本,携带低直链淀粉含量基因Wx-mq的优良食味粳稻品种南粳5055为父本配置杂交组合进行聚合育种。利用Pi-ta和Pi-b基因的分子标记多重PCR体系以及Wx-mq基因的四引物扩增受阻突变体系PCR检测技术,分别在不同的分离世代对目标基因位点进行检测,结合田间多代选育、抗性鉴定和籽粒胚乳外观鉴定,成功地将Pi-ta、Pi-b和Wx-mq基因聚合于一体,选育出稻瘟病抗性好、食味品质优、产量高的水稻新品系“南粳0051”,适合在江苏省淮北地区种植。本研究将三套自主研发的PCR检测体系成功应用于分子标记辅助选择,不仅为水稻多基因聚合育种提供了快捷、高效的选择方法,也为水稻抗病、优质育种创制了新的种质资源。

Yao S, Chen T, Zhang Y D, et al.

Pyramiding Pi-ta, Pi-b, and Wx-mq genes by marker-assisted selection in rice (Oryza sativa L.)

[J]. Acta Agronomica Sinica, 2017, 43 (11): 1622-1631 (in Chinese)

[本文引用: 1]

Zhao D D, Chung H, Jang Y H, et al.

Analysis of rice blast fungus genetic diversity and identification of a novel blast resistance OsDRq12 gene

[J]. Phytopathology, 2024, 114 (8): 1917-1925

[本文引用: 1]

Balija V, Bangale U, Ponnuvel S, et al.

Improvement of upland rice variety by pyramiding drought tolerance QTL with two major blast resistance genes for sustainable rice production

[J]. Rice Science, 2021, 28 (5): 493-500

DOI:10.1016/j.rsci.2021.07.009      [本文引用: 1]

Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality. However, the yield of Varalu is substantially low since it is being affected by reproductive drought stress along with the blast disease. The genetic improvement of Varalu was done by introgressing a major yield QTL, qDTY12.1, along with two major blast resistance genes i.e. Pi54 and Pi1 through marker-assisted backcross breeding. Both traits were transferred till BC2 generation and intercrossing was followed to pyramid the two traits. Stringent foreground selection was carried out using linked markers as well as peak markers (RM28099, RM28130, RM511 and RM28163) for the targeted QTL (qDTY12.1), RM206 for Pi54 and RM224 for Pi1. Extensive background selection was done using genome-wide SSR markers. Six best lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) having qDTY12.1 and two blast resistance genes in homozygous condition with recurrent parent genome of 95.0%?96.5% having minimal linkage drag of about 0.1 to 0.7 Mb were identified. These lines showed yield advantage under drought stress as well as irrigated conditions. MSM-36 showed better performance in the national coordinated trials conducted across India, which indicated that improved lines of Varalu expected to replace Varalu and may have an important role in sustaining rice production. The present study demonstrated the successful marker-assisted pyramiding strategy for introgression of genes/QTLs conferring biotic stress resistance and yield under abiotic stress in rice.

Ye H, Hou Q, Lv H, et al.

D53 represses rice blast resistance by directly targeting phenylalanine ammonia lyases

[J]. Journal of Integrative Plant Biology, 2024, 66 (9): 1827-1830

DOI:10.1111/jipb.13734      [本文引用: 1]

Wu Y, Xu W, Zhao G, et al.

A canonical protein complex controls immune homeostasis and multipathogen resistance

[J]. Science, 2024, 386 (6728): 1405-1412

DOI:10.1126/science.adr2138      PMID:39509474      [本文引用: 2]

The calcium (Ca) sensor ROD1 (RESISTANCE OF RICE TO DISEASES1) is a master regulator of immunity in rice. By screening suppressors of mutants, we show that ROD1 governs immune homeostasis by surveilling the activation of a canonical immune pathway. Mutations in (), (), (), and () all abolish enhanced disease resistance of plants. OsTIR catalyzes the production of second messengers 2'-(5″-phosphoribosyl)-5'-adenosine monophosphate (pRib-AMP) and diphosphate (pRib-ADP), which trigger formation of an OsEDS1-OsPAD4-OsADR1 (EPA) immune complex. ROD1 interacts with OsTIR and inhibits its enzymatic activity, whereas mutation of leads to constitutive activation of the EPA complex. Thus, we unveil an immune network that fine-tunes immune homeostasis and multipathogen resistance in rice.

Incarbone M, Bradamante G, Pruckner F, et al.

Salicylic acid and RNA interference mediate antiviral immunity of plant stem cells

[J]. Proceedings of the National Academy of Sciences, 2023, 120 (42): e2302069120

[本文引用: 2]

Ma X, Du M, Liu P, et al.

Alternation of soil bacterial and fungal communities by tomato-rice rotation in Hainan Island in Southeast of China

[J]. Archives of Microbiology, 2021, 203 (3): 913-925

DOI:10.1007/s00203-020-02086-5      PMID:33078269      [本文引用: 2]

Tomato-rice rotation is prevalent in subtropical and tropical regions in China. This practice enhances crop productivity and the disease suppression property of soils against soil-borne plant pathogens. To explore the variations and dynamics of bacterial and fungal communities, bulk soil samples were collected during two consecutive years under a rotation system between tomato and rice originated from the year of 2010 in Hainan Island, and 16S rDNA and ITS amplicons were sequenced by Illumina MiSeq. The results demonstrated that potentially beneficial bacterial phyla Acidobacteria, Chloroflexi and genus Paenibacillus, as well as the fungal genus Mortierella were significantly enriched, while the potentially pathogenic fungal genus Fusarium was significantly decreased during the crop rotation. Measurements of soil physicochemical properties indicated that the soil acidification was improved. Redundancy analysis (RDA) revealed the correlation of the microbial community with soil pH and identified soil total phosphorus (TP) level as the highest determinant factor for both bacterial and fungal communities. This work provides a preliminary description of changes of the bacterial and fungal communities related to tomato-rice rotation in China and offered experimental evidences for exploring the effects of this agricultural practice on soil ecology.

Nannipieri P, Ascher J, Ceccherini M T, et al.

Microbial diversity and soil functions

[J]. European Journal of Soil Science, 2003, 54 (4): 655-670

[本文引用: 1]

Yang Y, Tang Z, Gao A, et al.

Silicon-enriched rice straw biochar and silicon fertilizer mitigate rice straighthead disease by reducing dimethylarsinic acid accumulation

[J/OL]. Plant and Soil, 2025 [2025-04-22]. DOI: 10.1007/s11104-025-07478-4

[本文引用: 1]

李烨锋, 周兵, 朱练峰, .

氮肥减量配施硅肥对水稻产量及病虫害防控的影响

[J]. 中国稻米, 2020, 26 (3): 76-80.

DOI:10.3969/j.issn.1006-8082.2020.03.019      [本文引用: 1]

为探究减氮条件下配施硅肥对水稻产量及病虫害的影响,本研究比较了氮肥常规用量和氮肥用量减少20%~40%条件下,配施一定量的硅肥对水稻产量及病虫害发生的影响。结果表明,与常规用量施氮(300 kg/hm2)相比,氮肥减少20%~40%条件下,配施硅肥提高了水稻的产量及经济效益,显著降低了卷叶螟的数量且提升了害虫天敌数量,并显著降低稻曲病发生率和病情指数,最终减轻水稻病虫害。

Li Y F, Zhou B, Zhu L F, et al.

Effects of reduce nitrogen fertilizer combined with silicon fertilizer on grain yield and pests and diseases of rice

[J]. China Rice, 2020, 26 (3): 76-80 (in Chinese)

DOI:10.3969/j.issn.1006-8082.2020.03.019      [本文引用: 1]

In order to explore the effects of applying silicon fertilizer on the yield and diseases and insect pests control of rice under reduced nitrogen fertilizer application, five different fertilization treatments were designed. The results showed that, compared with N300 treatment, the N240Si60 and N180Si60 treatments could improve the yield and economic benefits of rice. Under N240Si60 and N180Si60 treatments, the number of Cnaphalocrocis medinalis as well as the incidence and disease index of rice false smut were significantly decreased, moreover, the number of natural enemies was significantly increased.

吴天琦, 李保同, 刘浪, .

氮肥运筹对江西省双季稻主要病虫害发生及产量的影响

[J]. 江西农业大学学报, 2020, 42 (6): 1087-1098.

[本文引用: 1]

Wu T Q, Li B T, Liu L, et al.

Effects of nitrogen fertilizer operation on occurrence of major diseases and insects in double cropping rice and its yield in Jiangxi province

[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42 (6): 1087-1098 (in Chinese)

[本文引用: 1]

Jamali H, Sharma A, Roohi, et al.

Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani

[J]. Journal of Basic Microbiology, 2020, 60 (3): 268-280

DOI:10.1002/jobm.201900347      PMID:31851769      [本文引用: 1]

The sheath blight disease of rice caused by Rhizoctonia solani is widely prevalent and one of the most destructive diseases, affecting rice cultivation and loss worldwide. In the present study, a set of twenty Bacillus isolates from saline soil of Uttar Pradesh were tested for their biocontrol activity against R. solani with the aim to obtain a potential strain for the control of sheath blight disease toward ecofriendly and sustainable agriculture. The results of dual-culture assay and scanning electron microscopic studies showed that the strain RH5 exhibited significant antagonistic activity (84.41%) against the fungal pathogen R. solani. On the basis of 16S rDNA sequencing analysis, the potential biocontrol strain RH5 was identified as Bacillus subtilis. Furthermore, the strain RH5 was characterized by different plant growth-promoting (PGP) activities and induction of defense-related enzymes in rice plants against R. solani. The strain RH5 posses various PGP attributes (indole acetic acid, siderophore, hydrogen cyanide production and phosphate, Zn, K solubility), hydrolytic enzymatic (chitinase, protease, cellulase, xylanase) activity, and presence of antimicrobial peptide biosynthetic genes (bacylisin, surfactin, and fengycin), which support the strain for efficient colonization of hyphae and its inhibition. Finally, the results of the greenhouse study confirmed that strain RH5 significantly increased plant growth and triggered resistance in rice plants through the production of defense-related antioxidant enzymes.© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Qi Z, Yu J, Shen L, et al.

Enhanced resistance to rice blast and sheath blight in rice (oryza sativa L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis

[J]. Plant Science, 2017, 265: 51-60

Mirara F, Kwadjo D D, Mwangi M.

Bacillus amyloliquefaciens D203 ameliorates rice growth and resistance to rice blast disease

[J]. Cogent Food & Agriculture, 2024, 10 (1): 2371943

Prabhukarthikeyan S R, Yadav M K, Anandan A, et al.

Bio-protection of brown spot disease of rice and insight into the molecular basis of interaction between Oryza sativa, Bipolaris oryzae and Bacillus amyloliquefaciens

[J]. Biological Control, 2019, 137: 104018

[本文引用: 1]

Zhu J L, Zhu Z R, Zhou Y, et al.

Effect of rice sowing date on occurrence of small brown planthopper and epidemics of planthopper-transmitted rice stripe viral disease

[J]. Agricultural Sciences in China, 2009, 8 (3): 332-341

[本文引用: 1]

Miao Liu J, Mei Q, Yun Xue C, et al.

Mutation of G-protein γ subunit DEP1 increases planting density and resistance to sheath blight disease in rice

[J]. Plant Biotechnology Journal, 2021, 19 (3): 418-420

[本文引用: 1]

Sun Q, Li T Y, Li D D, et al.

Overexpression of loose plant architecture 1 increases planting density and resistance to sheath blight disease via activation of PIN-FORMED 1 a in rice

[J]. Plant Biotechnology Journal, 2019, 17 (5): 855-857

[本文引用: 1]

马军韬, 张国民, 王永力, .

翻耕深度对水稻稻瘟病和纹枯病发生程度的影响

[J]. 中国植保导刊, 2024, 44 (11): 51-54, 70.

[本文引用: 1]

Ma J T, Zhang G M, Wang Y L, et al.

Effect of tillage depth on the incidence of rice blast and rice sheath blight

[J]. China Plant Protection, 2024, 44 (11): 51-54, 70 (in Chinese)

[本文引用: 1]

Sekiya N, Nakajima T, Oizumi N, et al.

Agronomic practices preventing local outbreaks of rice yellow mottle virus disease revealed by spatial autoregressive analysis

[J]. Agronomy for Sustainable Development, 2022, 42 (2): 15

[本文引用: 2]

Han Z, Zhang Y, Di C, et al.

Application of rice straw inhibits clubroot disease by regulating the microbial community in soil

[J]. Microorganisms, 2024, 12 (4): 717

[本文引用: 1]

Anam I, Arafat N, Hafiz M S, et al.

A systematic review of UAV and AI integration for targeted disease detection, weed management, and pest control in precision agriculture

[J]. Smart Agricultural Technology, 2024, 9: 100647

[本文引用: 2]

Bai X, Fang H, He Y, et al.

Dynamic UAV phenotyping for rice disease resistance analysis based on multisource data

[J]. Plant Phenomics, 2023, 5: 0019

[本文引用: 1]

Li G M, Zhao D X, Li J P, et al.

Unmanned aerial vehicle hierarchical detection of leaf blast in rice crops based on a specific spectral vegetation index

[J]. Frontiers of Agricultural Science and Engineering, 2025, 12 (2): 231-244

DOI:10.15302/J-FASE-2024576      [本文引用: 1]

Leaf blast is a significant global problem, severely affecting rice quality and yield, making swift, non-invasive detection crucial for effective field management. This study used hyperspectral remote sensing technology via an unmanned aerial vehicle to gather spectral data from rice crops. ANOVA and the Relief-F algorithm were used to identify spectral bands sensitive to the disease and developed a new vegetation index, the rice blast index (RBI). This RBI was compared with 30 established vegetation indexes, using correlation analysis and visual comparison to further shortlist six superior indexes, including RBI. These were evaluated using the K-nearest neighbor (KNN) and random forests (RF) classification models. RBI demonstrated superior detection accuracy for leaf blast in both the KNN model (95.0% overall accuracy and 93.8% kappa coefficient) and the RF model (95.1% overall accuracy and 92.5% kappa coefficient). This study highlights the significant potential of RBI as an effective tool for precise leaf blast detection, offering a powerful new mechanism and theoretical basis for enhanced disease management in rice cultivation.

Gu C, Cheng T, Cai N, et al.

Assessing narrow brown leaf spot severity and fungicide efficacy in rice using low altitude UAV imaging

[J]. Ecological Informatics, 2023, 77: 102208

[本文引用: 1]

谢亚平, 仝晓刚, 王晓慧.

基于高光谱的水稻稻曲病早期监测研究

[J]. 农业机械学报, 2023, 54 (9): 288-296.

[本文引用: 1]

Xie Y P, Tong X G, Wang X H.

Early monitoring of rice koji disease based on hyperspectroscop

[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (9): 288-296 (in Chinese)

[本文引用: 1]

Chakrabarty A, Ahmed S T, Islam M F U, et al.

An interpretable fusion model integrating lightweight CNN and transformer architectures for rice leaf disease identification

[J]. Ecological Informatics, 2024, 82: 102718

[本文引用: 1]

Ramadan S T Y, Islam M S, Sakib T, et al.

Image-based rice leaf disease detection using CNN and generative adversarial network

[J]. Neural Computing and Applications, 2025, 37 (1): 439-456

[本文引用: 1]

Yu H, Li X, Yu Y, et al.

A dual-branch multimodal model for early detection of rice sheath blight: fusing spectral and physiological signatures

[J]. Computers and Electronics in Agriculture, 2025, 231: 110031

[本文引用: 1]

/

京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn