|
|
Climate Change Research ›› 2021, Vol. 17 ›› Issue (6): 652-663.doi: 10.12006/j.issn.1673-1719.2021.239
Special Issue: IPCC第六次评估报告WGI解读专栏
• Special Section on the Sixth Assessment Report of IPCC: WGI • Previous Articles Next Articles
ZHOU Tian-Jun1,2(
), CHEN Zi-Ming2,1, CHEN Xiao-Long1, ZUO Meng1, JIANG Jie1, HU Shuai1
Received:2021-10-11
Revised:2021-11-02
Online:2021-11-30
Published:2021-11-08
ZHOU Tian-Jun, CHEN Zi-Ming, CHEN Xiao-Long, ZUO Meng, JIANG Jie, HU Shuai. Interpreting IPCC AR6: future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research, 2021, 17(6): 652-663.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2021.239
Fig. 1 Selected indicators of global climate change from CMIP6 historical and scenario simulations. (a) Global surface air temperature changes, (b) global land precipitation changes, (c) September Arctic sea-ice area, (d) global mean sea-level change (GMSL). (Source: IPCC AR6 Chapter 4 Fig. 4.2)
Fig. 2 Mid- and long-term change of annual mean surface temperature (Displayed are projected spatial patterns of multi-model mean change in annual mean near-surface air temperature in 2041-2060 and 2081-2100 relative to 1995-2014 for SSP1-2.6 and SSP3-7.0.The number of models used is indicated in the top right of the maps. No overlay indicates regions where the change is robust and significant. Hatching indicates regions with no change or no robust significant change. Cross-hatching indicates areas of conflicting signals where at least 66% of the models show change greater than the internal-variability threshold but fewer than 80% of all models agree on the sign of change. Source: IPCC AR6 Chapter 4 Fig. 4.19. For the definition of robustness and significant change, please see section 4.2.6 in the Chapter 4 of IPCC AR6)
Fig. 3 Long-term change of seasonal mean precipitation during 2081-2100 (Displayed are projected spatial patterns of multi-model mean change in winter and summer mean precipitation in 2081-2100 relative to 1995-2014, for SSP1-2.6 and SSP3-7.0. The number of models used is indicated in the top right of the maps. No map overlay indicates regions where the change is robust and significant. Hatching indicates regions with no change or no robust significant change. Cross-hatching indicates areas of conflicting signals where at least 66% of the models show change greater than the internal-variability threshold but fewer than 80% of all models agree on the sign of change. Source: IPCC AR6 Chapter 4 Fig. 4.24. For the definition of robustness and significant change, please see section 4.2.6 in the Chapter 4 of IPCC AR6)
Fig. 4 Multiple lines of evidence for GSAT changes for the long-term period 2081-2100, for all five priority scenarios, relative to the average over 1995-2014. (a) Future GSAT warming and uncertainty in the unconstrained projection, (b) future GSAT warming and uncertainty in the constrained projection, (c) the average of three constrained projection (grey) and the range estimated from emulator (green), (d) the average GSAT series of the constrained CMIP6 ranges and the emulator ranges. (The y-axes on the right-hand side are shifted upward by 0.85°C, the central estimate of the observed warming for 1995-2014, relative to 1850-1900. Source:IPCC AR6 Chapter 4 Fig. 4.11)
| [1] | IPCC. Climate change 2021: the physical science basis [M]// Lee J Y, Marotzke J, Bala G, et al. Future global climate: scenario-42 based projections and near-term information. Cambridge: Cambridge University Press, 2021: 1-195 |
| [2] |
张丽霞, 陈晓龙, 辛晓歌. CMIP6 情景模式比较计划 (ScenarioMIP) 概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519-525. DOI: 10.12006/j.issn.1673-1719.2019.082.
doi: 10.12006/j.issn.1673-1719.2019.082 |
|
Zhang L X, Chen X L, Xin X G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP)[J]. Climate Change Research, 2019, 15(5): 519-525. DOI: 10.12006/j.issn.1673-1719.2019.082 (in Chinese)
doi: 10.12006/j.issn.1673-1719.2019.082 |
|
| [3] |
曹龙. IPCC AR6报告解读:气候系统对太阳辐射干预响应[J]. 气候变化研究进展, 2021, 17(6): 671-684. DOI: 10.12006/j.issn.1673-1719.2021.170.
doi: 10.12006/j.issn.1673-1719.2021.170 |
|
Cao L. Climate system response to solar radiation modification[J]. Climate Change Research, 2021, 17(6): 671-684. DOI: 10.12006/j.issn.1673-1719.2021.170 (in Chinese)
doi: 10.12006/j.issn.1673-1719.2021.170 |
|
| [4] |
Liang Y, Gillett N P, Monahan A H. Climate model projections of 21st century global warming constrained using the observed warming trend [J]. Geophysical Research Letters, 2020, 47 (12): e2019GL086757. DOI: 10.1029/2019gl086757
doi: 10.1029/2019gl086757 |
| [5] |
Ribes A, Qasmi S, Gillett N P. Making climate projections conditional on historical observations [J]. Science Advances, 2021, 7 (4): eabc0671. DOI: 10.1126/sciadv.abc0671
doi: 10.1126/sciadv.abc0671 |
| [6] |
Tokarska K B, Stolpe M B, Sippel S, et al. Past warming trend constrains future warming in CMIP6 models [J]. Science Advances, 2020, 6 (12): eaaz9549. DOI: 10.1126/sciadv.aaz9549
doi: 10.1126/sciadv.aaz9549 |
| [7] |
Zhou T, Lu J, Zhang W, et al. The sources of uncertainty in the projection of global land monsoon precipitation [J]. Geophysical Research Letters, 2020: 47: e2020GL088415. DOI: 10.1029/2020GL088415
doi: 10.1029/2020GL088415 |
| [8] |
Chen Z, Zhou T, Zhang L, et al. Global land monsoon precipitation changes in CMIP6 projections [J]. Geophysical Research Letters, 2020: 47 (14): e2019GL086902. DOI: 10.1029/2019GL086902
doi: 10.1029/2019GL086902 |
| [9] |
Hu S, Zhou T J. Skillful prediction of summer rainfall in the Tibetan Plateau on multiyear time scales [J]. Science Advance, 2021, 7 (24): eabf9395. DOI: 10.1126/sciadv.abf9395
doi: 10.1126/sciadv.abf9395 |
| [10] |
Chen X, Zhou T, Wu P, et al. Emergent constraints on future projections of the western North Pacific Subtropical High[J]. Nature Communications, 2020, 11: 1-10. DOI: 10.1038/s41467-020-16631-9
doi: 10.1038/s41467-020-16631-9 URL |
| [11] |
Zhou T J, Chen Z M, Zou L W, et al. Development of climate and Earth system models in China: past achievements and new CMIP6 results[J]. Journal of Meteorological Research, 2020, 34(1): 1-19. DOI: 10.1007/s13351-020-9164-0
doi: 10.1007/s13351-020-9164-0 URL |
| [12] |
陈晓龙, 周天军, 郭准. 影响气候系统模式温室气体敏感度的反馈过程: 基于FGOALS 模式的研究[J]. 中国科学: 地球科学, 2014, 44: 322-332. DOI: 10.1007/s11430-013-4692-4.
doi: 10.1007/s11430-013-4692-4 |
|
Chen X L, Zhou T J, Guo Z. Climate sensitivities of two versions of FGOALS model to idealized radiative forcing[J]. Science China: Earth Sciences, 2014, 44: 322-332. DOI: 10.1007/s11430-013-4692-4 (in Chinese)
doi: 10.1007/s11430-013-4692-4 |
|
| [13] |
Chen X L, Guo Z, Zhou T J, et al. Climate sensitivity and feedbacks of a new coupled model CAMS-CSM to idealized CO2 forcing: a comparison with CMIP5 models[J]. Journal of Meteorological Research, 2019, 33(1): 31-45. DOI: 10.1007/s13351-019-8074-5
doi: 10.1007/s13351-019-8074-5 URL |
| [14] |
Shi X L, Chen X L, Dai Y W, et al. Climate sensitivity and feedbacks of BCC-CSM to idealized CO2 forcing from CMIP5 to CMIP6[J]. Journal of Meteorological Research, 2020, 34(4): 865-878. DOI: 10.1007/s13351-020-9204-9
doi: 10.1007/s13351-020-9204-9 URL |
| [15] |
陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445. DOI: 10.11867/j.issn.1001-8166. 2017.04.0435.
doi: 10.11867/j.issn.1001-8166. 2017.04.0435 |
|
Chen X L, Zhou T J. Surface air temperature projection under 1.5 ℃ warming threshold based on corrected pattern scaling technique[J]. Advances in Earth Science, 2017, 32(4): 435-445. DOI: 10.11867/j.issn.1001-8166. 2017.04.0435 (in Chinese)
doi: 10.11867/j.issn.1001-8166. 2017.04.0435 |
| [1] | SHI Ren-Rui, JIANG Xing-Wen, WANG Zun-Ya. The onset of Tibetan Plateau rainy season and its impact factors [J]. Climate Change Research, 2025, 21(1): 91-101. |
| [2] | WU Yao, TANG Hong-Yu, WEI Lin-Xiao, HE Hui-Gen. Analysis of hourly precipitation variations in autumn in West China [J]. Climate Change Research, 2024, 20(5): 558-570. |
| [3] | WANG Rong, DU Xiao-Zhong, CHAO Qing-Chen, ZHAO Shan-Shan, YE Dian-Xiu, LI Xiu-Cang, LI Ying, ZHANG Meng-Ran. Trends of precipitation and characteristics of wetness-dryness encountering in the water source and receiving areas of the west route of the South-to-North Water Transfer Project [J]. Climate Change Research, 2024, 20(5): 571-580. |
| [4] | XU Ying, HAN Zhen-Yu, WU Jie, LI Rou-Ke. The differences of global extreme climate events changes before and after 1.5℃ overshoot [J]. Climate Change Research, 2024, 20(4): 389-402. |
| [5] | ZHOU Tian-Yi, JIANG Zhi-Hong, LI Wei, SUN Cen-Xiao. A comparative study of future summer precipitation projections in Northwest China under different physical constraint schemes [J]. Climate Change Research, 2024, 20(4): 403-415. |
| [6] | ZHOU Jing, SUN Yan, QI Ya-Jing. Analysis on interdecadal variation and the causes of compound extreme cold and rainfall events in spring in China [J]. Climate Change Research, 2024, 20(1): 1-9. |
| [7] | WU Yan-Wen, YAN Hong-Ming, SHI Zheng-Tao, SHU Kang-Ning. Research on the response of heavy precipitation in Kunming to urbanization and thermal environment changes [J]. Climate Change Research, 2023, 19(6): 723-737. |
| [8] | LUAN Lan, ZHAI Pan-Mao. Changes in rainy season precipitation properties over the Qinghai-Tibet Plateau based on multi-source datasets [J]. Climate Change Research, 2023, 19(2): 173-190. |
| [9] | ZHAN Yun-Jian, CHEN Dong-Hui, LIAO Jie, JU Xiao-Hui, ZHAO Yu-Fei, REN Guo-Yu. Construction of a daily precipitation dataset of 60 city stations in China for the period 1901-2019 [J]. Climate Change Research, 2022, 18(6): 670-682. |
| [10] | ZHANG Shi-Yan, HU Yong-Yun, LI Zhi-Bo. Recent changes and future projection of precipitation in Northwest China [J]. Climate Change Research, 2022, 18(6): 683-694. |
| [11] | GUO Si-Yue, GENG Yong. Interpretation of IPCC AR6 on mitigation in industry [J]. Climate Change Research, 2022, 18(5): 574-579. |
| [12] | BAI Quan, HU Shan, GU Li-Jing. Interpretation of IPCC AR6 on buildings [J]. Climate Change Research, 2022, 18(5): 557-566. |
| [13] | GAO Yuan, OU Xun-Min. Interpretation of IPCC AR6 report: transportation carbon emissions reduction pathways strengthening technology and management innovation [J]. Climate Change Research, 2022, 18(5): 567-573. |
| [14] | LIU Junguo, MENG Ying, ZHANG Xue-Jing. Interpretation of IPCC AR6 report: groundwater [J]. Climate Change Research, 2022, 18(4): 414-421. |
| [15] | LIU Junguo, CHEN He, TIAN Zhan. Interpretation of IPCC AR6: climate change and water security [J]. Climate Change Research, 2022, 18(4): 405-413. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|