[1] |
Coumou D, Robinson A. Historic and future increase in the global land area affected by monthly heat extremes[J]. Environmental Research Letters, 2013, DOI: 10.1088/1748-9326/8/3/034018
doi: 10.1088/1748-9326/aac092
URL
pmid: 33343687
|
[2] |
Yao Y, Luo Y, Huang J, et al. Comparison of monthly temperature extremes simulated by CMIP3 and CMIP5 models[J]. Journal of Climate, 2013, 26: 7692-7707
doi: 10.1175/JCLI-D-12-00560.1
URL
|
[3] |
Sun Y, Zhang X B, Zwiers F W, et al. Rapid increase in the risk of extreme summer heat in eastern China[J]. Nature Climate Change, 2014, 4: 1082-1085
doi: 10.1038/NCLIMATE2410
URL
|
[4] |
Xia J J, Tu K, Yan Z W, et al. The super-heat wave in eastern China during July-August 2013: a perspective of climate change[J]. International Journal of Climatology, 2016, 36: 1291-1298. DOI: 10.1002/joc.442
doi: 10.1002/joc.2016.36.issue-3
URL
|
[5] |
Xia Y, Li Y, Guan D, et al. Assessment of the economic impacts of heat waves: a case study of Nanjing, China[J]. Journal of Cleaner Production, 2018, 171, 811-819. DOI: 10.1016/j.jclepro.2017.10.069
doi: 10.1016/j.jclepro.2017.10.069
URL
|
[6] |
中国气象局. 2018年中国气候公报[M/OL]. 2019 [2020-03-20]. http://www.cma.gov.cn/root7/auto13139/201903/t20190319_517664.html.
|
|
China Meteorological Administration. China climate bulletin [M/OL]. 2019 [2020-03-20]. http://www.cma.gov.cn/root7/auto13139/201903/t20190319_517664.html (in Chinese)
|
[7] |
Met Office. Weather and climate news [EB/OL]. 2011 [2020-03-20] http://www.metoffice.gov.uk/news/releases/archive/2011/cold-dec
|
[8] |
武炳义. 2012 年1 月、2016 年1 月东亚两次极端严寒事件及其与北极增暖的可能联系[J]. 大气科学学报, 2019, 42(1):14-27.
|
|
Wu B Y. Two extremely cold events in East Asia in January of 2012 and 2016 and their possible associations with Arctic warming[J]. Journal of Atmospheric Sciences, 2019, 42(1):14-27 (in Chinese)
|
[9] |
严中伟, 杨赤. 近几十年我国极端气候变化格局[J]. 气候与环境研究, 2000, 5(3):267-272.
|
|
Yan Z W, Yang C. Geographic patterns of extreme climate changes in China during 1951-1997[J]. Climatic and Environmental Research, 2000, 5(3):267-272 (in Chinese)
|
[10] |
陈思思, 张井勇, 黄刚. 时间尺度分离在华南夏季极端高温预测中的应用[J]. 气候与环境研究, 2018, 23(2):185-198.
|
|
Chen S S, Zhang J Y, Huang G. Application of time-scale decomposition statistical method in climatic prediction of summer extreme high-temperature events in South China[J]. Climatic and Environmental Research, 2018, 23(2):185-198 (in Chinese)
|
[11] |
尹红, 孙颖. 基于ETCCDI指数2017年中国极端温度和降水特征分析[J]. 气候变化研究进展, 2019, 15(4):363-373.
|
|
Yin H, Sun Y. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices[J]. Climate Change Research, 2019, 15(4):363-373 (in Chinese)
|
[12] |
Han T T, Chen H P, Hao X, et al. Projected changes in temperature and precipitation extremes over the Silk Road Economic Belt regions by the Coupled Model Intercomparison Project Phase 5 multi-model ensembles[J]. International Journal of Climatology, 2018, 38: 4077-4091
|
[13] |
Yan Z W, Jones P D, Davies T D, et al. Trends of extreme temperatures in Europe and China based on daily observations[J]. Climatic Change, 2002, 53: 355-392
|
[14] |
Zhai P M, Pan X H. Trends in temperature extremes during 1951-1999 in China[J]. Geophysical Research Letters, 2003, 30: 169-172
|
[15] |
Qian C, Zhang X, Li Z. Linear trends in temperature extremes in China, with an emphasis on non-Gaussian and serially dependent characteristics[J]. Climate Dynamics, 2019, 53: 533. DOI: 10.1007/s00382-018-4600-x
|
[16] |
Räisänen J, Ylhäisi J S. Cold months in a warming climate[J]. Geophysical Research Letters, 2011, 38, L22704. DOI: 10.1029/2011GL049758
|
[17] |
Perkins S E, Pitman A J, Sisson S A. Systematic differences in future 20-year temperature extremes in AR4 model projections over Australia as a function of model skill[J]. International Journal of Climatology, 2013, 33: 1153-1167
|
[18] |
Stainforth D A, Allen M R, Tredger E R, et al. Confidence, uncertainty and decision-support relevance in climate predictions[J]. Philosophical Transitions of the Royal Society of London, 2007, 365: 2145-2161
|
[19] |
Qi Y J, Qian C, Yan Z W. An alternative multi-model ensemble mean approach for near-term projection[J]. International Journal of Climatology, 2017, 37: 109-122
|
[20] |
Qi Y J, Yan Z W, Qian C, et al. Near-term projections of global and regional temperature changes in CMIP5 considering both the secular trend and multidecadal variability[J]. Journal of Meteorological Research, 2018, 32(3):337-350
|
[21] |
Macadam I, Pitman A J, Whetton P H, et al. Ranking climate models by performance using actual values and anomalies: implications for climate change impact assessments[J]. Geophysical Research Letters, 2010, 37: L16704. DOI: 10.1029/2010GL043877
|
[22] |
Sun Q, Miao C, Duan Q. Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China[J]. Journal of Geophysical Research: Atmosphere, 2015, 120: 4806-4824. DOI: 10.1002/2014JD022994
|
[23] |
Perkins S E, Pitman A J, Holbrook N J, et al. Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature and precipitation over Australia using probability density functions[J]. Journal of Climate, 2007, 20: 4356-4376. DOI: 10.1175/JCLI4253.1
|
[24] |
Perkins S E, Pitman A J. Do weak AR4 models bias projections of future climate changes over Australia?[J]. Climatic Change, 2008, 93: 527-558
|
[25] |
Maxino C C, McAvaney B J, Pitman A J, et al. Ranking the AR4 climate models over the Murray-Darling basin using simulated maximum temperature, minimum temperature and precipitation[J]. International Journal of Climatology, 2008, 28: 1097-1112. DOI: 10.1002/joc.1612
|
[26] |
Mao J, Shi X, Ma L, et al. Assessment of reanalysis daily extreme temperatures with China’s homogenized historical dataset during 1979-2001 using probability density functions[J]. Journal of Climate, 2010, 23: 6605-6623. DOI: 10.1175/2010JCLI3581.1
|
[27] |
Giorgi F, Francisco R. Uncertainties in regional climate change predictions. A regional analysis of ensemble simulations with the HadCM2 GCM[J]. Climate Dynamics, 2000, 16: 169-182
|
[28] |
Kharin V V, Zwiers F W, Zhang X, et al. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations[J]. Journal of Climate, 2007, DOI: 10.1175/JCLI4066.1
doi: 10.1175/JCLI-D-16-0766.1
URL
pmid: 30449951
|
[29] |
Song Y, Qiao F, Song Z, et al. Water vapor transport and cross-equatorial flow over the Asian-Australia monsoon region simulated by CMIP5 climate models[J]. Advances in Atmospheric Sciences, 2013, 30: 726-738, DOI: 10.1007/s00376-012-2148-y
|
[30] |
胡芩, 姜大膀, 范广洲. CMIP5 全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5):924-938.
|
|
Hu Q, Jiang D B, Fan G Z. Evaluation of CMIP5 Models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5):924-938 (in Chinese)
|
[31] |
Kharin V V, Zwiers F W, Zhang X, et al. Changes in temperature and precipitation extremes in the CMIP5 ensemble[J]. Climatic Change, 2013, 119: 345. DOI: 10.1007/s10584-013-0705-8
|
[32] |
Orlowsky B, Seneviratne S I. Global changes in extreme events: regional and seasonal dimension[J]. Climatic Change, 2012, 110: 669-696
|