气候变化研究进展 ›› 2023, Vol. 19 ›› Issue (4): 418-430.doi: 10.12006/j.issn.1673-1719.2022.272
收稿日期:2022-12-06
修回日期:2023-02-05
出版日期:2023-07-30
发布日期:2023-07-17
通讯作者:
左志燕,女,教授,作者简介:王玮,女,硕士研究生
基金资助:
WANG Wei1, WANG Huan1,2, ZUO Zhi-Yan1,3,4(
)
Received:2022-12-06
Revised:2023-02-05
Online:2023-07-30
Published:2023-07-17
摘要:
利用1961—2020年中国逐日地表气温观测资料,综合考虑其概率密度分布与空间范围,定义了全国一致冷日、一致暖日与全国反位相型冷暖日3种全国性极端冷、暖日,并分析了各自的变化特征。结果表明,中国冬季全国性极端冷、暖日共960 d。其中一致冷日358 d,一致暖日271 d,反位相型冷暖日331 d。在21世纪前,一致冷日数与累计强度随时间逐渐下降,冬季与2月的一致冷日数均在20世纪80年代出现显著突变减少;一致暖日则随时间呈上升趋势,其中只有12月的一致暖日数在70年代末突变增加。21世纪前冬季一致冷(暖)日的下降(上升)受2月的影响最大。进入21世纪后,1月一致冷日的增加使冬季一致冷日出现小幅度上升,而2月一致暖日迅速减少导致冬季一致暖日在21世纪初有小幅度下降,之后1月一致暖日的迅速增加使得冬季一致暖日继续上升。冬季、1月、2月的反位相型冷暖日的天数均在20世纪70—80年代突变减少,21世纪10年代前,冬季反位相型冷暖日主要受到2月变化的影响,之后1月的贡献更大。
王玮, 王欢, 左志燕. 中国冬季大范围极端冷、暖日的时空变化特征[J]. 气候变化研究进展, 2023, 19(4): 418-430.
WANG Wei, WANG Huan, ZUO Zhi-Yan. Characteristics of the widespread extreme cold and warm days over China in winter[J]. Climate Change Research, 2023, 19(4): 418-430.
图1 1961—2019年冬季中国发生全国一致冷日(a)、一致暖日(b)、反位相型冷暖日(c)时的地表气温距平,以及发生反位相型时地表气温距平的EOF第一模态空间分布(d) 注:斜线区域表示通过了95%信度检验的区域。
Fig. 1 Surface air temperature (SAT) anomalies when spatially consistent extreme cold days (a), warm days (b), and extreme days with north-south dipole temperature (c) occurred in the winters from 1961 to 2019 (The hatched areas indicate the confidence level exceeds 95% using a Student’s test), and the spatial distribution of the first leading EOF mode for the daily SAT anomalies when the extreme days with north-south dipole temperature occurred (d)
图3 1961—2019年冬季(a)、12月(b)、1月(c)、2月(d)发生全国一致冷日的天数与累计强度的年代际变化及天数(e)、累计强度(f)的各月占比
Fig. 3 Decadal variations of the days and cumulative intensities of the spatially consistent extreme cold days in whole winter (a), December (b), January (c) and February (d) from 1961 to 2019, and their percentages of the days (e) and cumulative intensities (f) in winter
图4 1961—2019年冬季(a)、12月(b)、1月(c)、2月(d)发生一致冷日天数的M-K统计量曲线
Fig. 4 Mann-Kendall statistical curves of the spatially consistent extreme cold days in whole winter (a), December (b), January (c) and February (d) from 1961 to 2019. (The black dash line denotes the significance level of α=0.05)
图6 1961—2019年冬季(a)、12月(b)、1月(c)、2月(d)发生全国一致暖日的天数与累计强度的年代际变化及天数(e)、累计强度(f)的各月占比
Fig. 6 Decadal variations of the days and cumulative intensities of spatially consistent extreme warm days in whole winter (a), December (b), January (c) and February (d) from 1961 to 2019, and their percentage of days (e) and cumulative intensities (f) in winter
图7 1961—2019年冬季(a)、12月(b)、1月(c)、2月(d)发生一致暖日天数的M-K统计量曲线 注:虚线为α=0.05水平临界值。
Fig. 7 Mann-Kendall statistical curves of the spatially consistent extreme warm days in whole winter (a), December (b), January (c) and February (d) from 1961 to 2019. (The black dash line denotes the significance level of α=0.05)
图9 1961—2019年冬季(a)、12月(b)、1月(c)、2月(d)发生全国反位相型冷暖日的天数与累计强度的年代际变化及天数(e)、累计强度(f)的各月占比
Fig. 9 Decadal variations of the days and cumulative intensities of extreme days with north-south dipole temperature in whole winter (a), December (b), January (c) and February (d) from 1961 to 2019, and their percentage of days (e) and cumulative intensities (f) in winter
图10 1961—2019年冬季(a)、12月(b)、1月(c)、2月(d)发生反位相型冷暖日天数的M-K统计量曲线 注:虚线为α=0.05水平临界值。
Fig. 10 Mann-Kendall statistical curves of extreme days with north-south dipole temperature in whole winter (a), December (b), January (c) and February (d) from 1961 to 2019. (The black dash line denotes the significance level of α=0.05)
| [1] | IPCC. Climate change 2013: the physical science basis[M]. Cambridge: Cambridge University Press, 2013: 1-30 |
| [2] | 翟盘茂, 周佰铨, 陈阳, 等. 气候变化科学方面的几个最新认知[J]. 气候变化研究进展, 2021, 17 (6): 629-635. |
| Zhai P M, Zhou B Q, Chen Y, et al. Several new understandings in the climate change science[J]. Climate Change Research, 2021, 17 (6): 629-635 (in Chinese) | |
| [3] |
Katz R W, Brown B G. Extreme events in a changing climate: variability is more important than averages[J]. Climatic Change, 1992, 21: 289-302
doi: 10.1007/BF00139728 URL |
| [4] |
Kloster D P, Morzillo A T, Volin J C. A national and local media perspective on responsibility for and solutions to storm-related power outages in the northeastern United States[J]. Environmental Hazards, 2018, 18: 228-245
doi: 10.1080/17477891.2018.1544114 URL |
| [5] |
Zhou B Z, Gu L, Ding Y, et al. The great 2008 Chinese ice storm: its socioeconomic-ecological impact and sustainability lessons learned[J]. Bulletin of the American Meteorological Society, 2011, 92: 47-60
doi: 10.1175/2010BAMS2857.1 URL |
| [6] |
Song X, Zhang Z, Chen Y, et al. Spatiotemporal changes of global extreme temperature events (ETEs) since 1981 and the meteorological causes[J]. Natural Hazards, 2013, 70: 975-994
doi: 10.1007/s11069-013-0856-y URL |
| [7] |
Zuo Z Y, Zhang R H, Huang Y, et al. Extreme cold and warm events over China in wintertime[J]. International Journal of Climatology, 2015, 35: 3568-3581
doi: 10.1002/joc.2015.35.issue-12 URL |
| [8] | 左志燕, 李明倩, 安宁, 等. 中国冬季大范围极端冷、暖日的变化与成因[J]. 中国科学: 地球科学, 2022, 52 (2): 238-252. |
|
Zuo Z Y, Li M Q, An N, et al. Variations of widespread extreme cold and warm days in winter over China and their possible causes[J]. Science China Earth Sciences, 2022, 65 (2): 337-350 (in Chinese)
doi: 10.1007/s11430-021-9836-0 |
|
| [9] | Zhang X, Alexander L V, Hegerl G C, et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011 (2): 851-870 |
| [10] | 谢星旸, 游庆龙, 王雨枭. 1961—2014年中国冬季极端低温变化特征分析[J]. 气候与环境研究, 2018, 23 (4): 429-441. |
| Xie X Y, You Q L, Wang Y X. Changes in extreme low temperature in China in the winters from 1961 to 2014[J]. Climatic and Environmental Research, 2018, 23 (4): 429-441 (in Chinese) | |
| [11] | 翟盘茂, 潘晓华. 中国北方近50年温度和降水极端事件变化[J]. 地理学报, 2003, 58 (S1): 1-10. |
| Zhai P M, Pan X H. Change in extreme temperature and precipitation over northern China during the second half of 20th century[J]. Acta Geographica Sinica, 2003, 58 (S1): 1-10 (in Chinese) | |
| [12] | 杨金虎, 江志红, 魏锋, 等. 近45 a来中国西北年极端高、低温的变化及对区域性增暖的响应[J]. 干旱区地理, 2006, 29 (5): 625-631. |
| Yang J H, Jang Z H, Wei F, et al. Variability of extreme high temperature and low temperature and their response to regional warming in Northwest China in recent 45 years[J]. Arid Land Geography, 2006, 29 (5): 625-631 (in Chinese) | |
| [13] |
Chen S F, Chen W, Wei K. Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO[J]. Advances in Atmospheric Sciences, 2013, 30: 1712-1724
doi: 10.1007/s00376-013-2296-8 URL |
| [14] |
Zhang Z J, Qian W H. Identifying regional prolonged low temperature events in China[J]. Advances in Atmospheric Sciences, 2011, 28: 338-351
doi: 10.1007/s00376-010-0048-6 URL |
| [15] |
Walsh J E, Phillips A S, Portis D H, et al. Extreme cold outbreaks in the United States and Europe, 1948-99[J]. Journal of Climate, 2001, 14: 2642-2658
doi: 10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2 URL |
| [16] | 王晓娟, 龚志强, 任福民, 等. 1960—2009年中国冬季区域性极端低温事件的时空特征[J]. 气候变化研究进展, 2012, 8 (1): 8-15. |
| Wang X J, Gong Z Q, Ren F M, et al. Spatial/temporal characteristics of China regional extreme low temperature events in winter during 1960-2009[J]. Climate Change Research, 2012, 8 (1): 8-15 (in Chinese) | |
| [17] | 王晓娟, 龚志强, 沈柏竹, 等. 近50年中国区域性极端低温事件频发期的气候特征对比分析研究[J]. 气象学报, 2013, 71 (6): 1061-1073. |
| Wang X J, Gong Z Q, Shen B Z, et al. A comparative study of the climatic characteristics of the periods of frequent occurrence of the regional extreme low temperature event in China in recent 50 years[J]. Acta Meteorological Sinica, 2013, 71 (6): 1061-1073 (in Chinese) | |
| [18] |
Chen H S, Liu L, Zhu Y J. Possible linkage between winter extreme low temperature events over China and synoptic-scale transient wave activity[J]. Science China Earth Sciences, 2012, 56: 1266-1280
doi: 10.1007/s11430-012-4442-z URL |
| [19] |
Zhai P M, Pan X H. Trends in temperature extremes during 1951-1999 in China[J]. Geophysical Research Letters, 2003, 30: 1913. DOI: 10.1029/ 2003GL018004
doi: 10.1029/ 2003GL018004 |
| [20] |
Qian W H, Lin X. Regional trends in recent temperature indicesin China[J]. Climate Research, 2004, 27: 119-134. DOI: 10.3354/CR027119
doi: 10.3354/CR027119 URL |
| [21] |
刘子奇, 路瑶, 李艳. 中国大范围持续性极端低温事件年代际变化及其大气环流成因[J]. 高原气象, 2022, 41 (3): 558-571.
doi: 10.7522/j.issn.1000-0534.2021.00031 |
|
Liu Z Q, Lu Y, Li Y. Interdecadal variability of extensive and persistent extreme cold events in China and their atmospheric circulation causes[J]. Plateau Meteorology, 2022, 41 (3): 558-571 (in Chinese)
doi: 10.7522/j.issn.1000-0534.2021.00031 |
|
| [22] | 柏会子, 肖登攀, 刘剑锋, 等. 1965—2014年华北地区极端气候事件与农业气象灾害时空格局研究[J]. 地理与地理信息科学, 2018, 34 (5): 99-105. |
| Bai H Z, Xiao D P, Liu J F, et al. Temporal and spatial patterns of extreme climate events and agrometeorological disasters in North China from 1965 to 2014[J]. Geography and Geo-Information Science, 2018, 34 (5): 99-105 (in Chinese) | |
| [23] | 梁苏洁, 丁一汇, 赵南, 等. 近50年中国大陆冬季气温和区域环流的年代际变化研究[J]. 大气科学, 2014, 38 (5): 974-992. |
| Liang S J, Ding Y H, Zhao N, et al. Analysis of the interdecadal changes of the wintertime surface air temperature over mainland China and regional atmospheric circulation characteristics during 1960-2013[J]. Chinese Journal of Atmospheric Sciences, 2014, 38 (5): 974-992 (in Chinese) | |
| [24] |
Yun J, Ha K J, Jo Y H. Interdecadal changes in winter surface air temperature over East Asia and their possible causes[J]. Climate Dynamics, 2017, 51: 1375-1390
doi: 10.1007/s00382-017-3960-y |
| [25] | 王会军, 范可. 东亚季风近几十年来的主要变化特征[J]. 大气科学, 2013, 37 (2): 313-318. |
| Wang H J, Fan K. Recent changes in the East Asian monsoon[J]. Chinese Journal of Atmospheric Sciences, 2013, 37 (2): 313-318 (in Chinese) | |
| [26] |
Wang L, Chen W. The East Asian winter monsoon: re-amplification in the mid-2000s[J]. Chinese Science Bulletin, 2014, 59: 430-436
doi: 10.1007/s11434-013-0029-0 URL |
| [27] |
Wang L, Chen W. An intensity index for the East Asian winter monsoon[J]. Journal of Climate, 2014, 27: 2361-2374
doi: 10.1175/JCLI-D-13-00086.1 URL |
| [28] |
Wang H, Zuo Z Y, Qiao L, et al. Frequency of the winter temperature extremes over Siberia dominated by the Atlantic Meridional Overturning Circulation[J]. NPJ Climate and Atmospheric Science, 2022, 5: 1-10
doi: 10.1038/s41612-021-00225-3 |
| [1] | 陈婷婷, 余文君, 李艳忠, 白鹏, 星寅聪, 黄曼捷, 邵伟. 中国1960—2019年体感温度的时空变化及其风险分析[J]. 气候变化研究进展, 2024, 20(3): 265-277. |
| [2] | 玛地尼亚提·地里夏提,玉素甫江·如素力,海日古丽·纳麦提,肉克亚木·艾克木. 天山新疆段植被物候特征及其气候响应[J]. 气候变化研究进展, 2019, 15(6): 624-632. |
| [3] | 尹红,孙颖. 基于ETCCDI指数2017年中国极端温度和降水特征分析[J]. 气候变化研究进展, 2019, 15(4): 363-373. |
| [4] | 刘洁,王宁练,花婷. 1960—2016年中国北方半干旱区盛夏降水时空变化及其水汽输送特征分析[J]. 气候变化研究进展, 2019, 15(3): 257-269. |
| [5] | 李宁,白蕤,李玮,张蕾,易克贤,陈淼,陈歆. 未来气候变化背景下我国橡胶树寒害事件的变化特征[J]. 气候变化研究进展, 2018, 14(4): 402-410. |
| [6] | 周建琴, 黄玮, 朱勇, 李蒙, 周波涛. 云南气候舒适度分布和变化特征及未来变化趋势预估[J]. 气候变化研究进展, 2018, 14(2): 144-154. |
| [7] | 胡浩林, 任福民. CMIP5模式集合对中国区域性低温事件的模拟与预估[J]. 气候变化研究进展, 2016, 12(5): 396-406. |
| [8] | 蔡新斌, 买尔燕古丽·阿不都热合曼, 江晓珩, 林宣龙, 田润炜, 布早拉木. 新疆湿地资源时空变化特征及其原因分析研究[J]. 气候变化研究进展, 2015, 11(6): 395-401. |
| [9] | 王艳君, 高超, 王安乾, 王豫燕, 张飞跃, 翟建青, 李修仓, 苏布达. 中国暴雨洪涝灾害的暴露度与脆弱性时空变化特征[J]. 气候变化研究进展, 2014, 10(6): 391-398. |
| [10] | 钱维宏 李进. 北京地区长期增暖中的一个减缓期[J]. 气候变化研究进展, 2012, 8(3): 178-182. |
| [11] | 李明财 熊明明 杨艳娟 任雨. 环渤海地区1961—2010年太阳总辐射时空变化特征[J]. 气候变化研究进展, 2012, 8(2): 119-123. |
| [12] | 王平;黄耀;张稳. 1955-2005年中国稻田甲烷排放估算[J]. 气候变化研究进展, 2009, 5(05): 291-297. |
| [13] | 余卫东 柳俊高 常军 王纪军. 1957-2005年河南省降水和温度极端事件变化[J]. 气候变化研究进展, 2008, 4(002): 78-083. |
| [14] | 高留喜 杨成芳 冯桂力 吕环宇. 山东省雷暴时空变化特征[J]. 气候变化研究进展, 2007, 03(04): 239-242. |
| [15] | 简茂球 秦晓昊 乔云亭 温之平. 中国南方春季大尺度大气水汽汇时空变化特征[J]. 气候变化研究进展, 2007, 03(02): 74-079. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|