|
Climate Change Research ›› 2023, Vol. 19 ›› Issue (2): 173-190.doi: 10.12006/j.issn.1673-1719.2022.046
• Changes in Climate System • Previous Articles Next Articles
Received:
2022-03-14
Revised:
2022-04-27
Online:
2023-03-30
Published:
2022-12-09
LUAN Lan, ZHAI Pan-Mao. Changes in rainy season precipitation properties over the Qinghai-Tibet Plateau based on multi-source datasets[J]. Climate Change Research, 2023, 19(2): 173-190.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2022.046
Fig. 1 Station distribution, mean annual precipitation total and climate division for the Qinghai-Tibet Plateau. (Sub-regions I, II, and III stand for arid, semi-arid, and semi-humid climate regions)
Fig. 2 Time series of regional precipitation (a) and rain days (b) anomalies in rainy season.(APHRO, CN05.1, CMFD, TRMM and GPCP data are all interpolated to the station locations)
Table 4 The trends of precipitation and rain days anomalies, and the ratio of the grid data to the in-situ observations in the corresponding time period
Fig. 4 The ratio of the trends of precipitation (left column) and rain days (right column) between the APHRO, CN05.1, CMFD, TRMM and GPCP datasets and the in-situ observations
Fig. 5 Time series of regional R95ptot (a) and R95pday (b) anomalies in rainy season. (APHRO, CN05.1, CMFD, TRMM and GPCP data are all interpolated to the station locations)
Fig. 7 The ratio of the trend of R95ptot (left column) and R95pday (right column) between the APHRO, CN05.1, CMFD, TRMM and GPCP datasets and the in-situ observations
Fig. 8 Scatter plots of correlation coefficients and the ratios of the trend of precipitation (a) and raindays (b) between APHRO, CN05.1, CMFD datasets and the in-situ observations in the rainy season
Fig. 10 Time series of precipitation and rain days anomalies in different sub-regions.(APHRO, CN05.1, CMFD datasets are all covered the entire sub-regions)
Fig. 12 Trends in (a1, b1, c1, d1) precipitation, (a2, b2, c2, d2) rain days, (a3, b3, c3, d3) R95ptot, (a4, b4, c4, d4) R95pday in rainy season for four datasets. (The black lines are the boundaries of different climate zones; The base maps are the trends of grid datasets, and the dots are the trends of the in-situ observations in the corresponding time period, cross indicates trends significant at 90% confidence level)
[1] | Joshi M K, Pandey A C. Trend and spectral analysis of rainfall over India during 1901-2000[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D06104 |
[2] | 崔鹏, 苏凤环, 邹强, 等. 青藏高原山地灾害和气象灾害风险评估与减灾对策[J]. 科学通报, 2015, 60 (32): 3067-3077. |
Cui P, Su F H, Zou Q, et al. Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan Plateau[J]. Science Bulletin, 2015, 60 (32): 3067-3077 (in Chinese) | |
[3] | 徐祥德, 董李丽, 赵阳, 等. 青藏高原“亚洲水塔”效应和大气水分循环特征[J]. 科学通报, 2019, 64 (27): 2830-2841. |
Xu X D, Dong L L, Zhao Y, et al. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation[J]. Science Bulletin, 2019, 64 (27): 2830-2841 (in Chinese) | |
[4] |
Trenberth K E. Changes in precipitation with climate change[J]. Climate Research, 2010, 47 (1-2): 123-138
doi: 10.3354/cr00953 URL |
[5] | You Q, Kang S, Aguilar E, et al. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D07101 |
[6] | 周顺武, 王传辉, 杜军, 等. 青藏高原汛期降水的时空分布特征[J]. 气候与环境研究, 2011, 16 (6): 723-732. |
Zhou S W, Wang C H, Du J, et al. Characteristics of spatial and temporal distribution of precipitation in flood season over the Tibetan Plateau[J]. Climatic and Environment Research, 2011, 16 (6): 723-732 (in Chinese) | |
[7] |
齐文文, 张百平, 庞宇, 等. 基于TRMM数据的青藏高原降水的空间和季节分布特征[J]. 地理科学, 2013, 33 (8): 999-1005.
doi: 10.13249/j.cnki.sgs.2013.08.999 |
Qi W W, Zhang B P, Pang Y, et al. TRMM-data-based spatial and seasonal patterns of precipitation in the Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 2013, 33 (8): 999-1005 (in Chinese) | |
[8] | Wang C P, Huang M T, Zhai P M. Change in drought conditions and its impacts on vegetation growth over the Tibetan Plateau[J]. Advances in Climate Change Research, 2021, 12 (3): 9 |
[9] | 吴国雄, 段安民, 张雪芹, 等. 青藏高原极端天气气候变化及其环境效应[J]. 自然杂志, 2013 (3): 167-171. |
Wu G X, Duan A M, Zhang X Q, et al. Extreme weather and climate changes and its environmental effects over the Tibetan Plateau[J]. Chinese Journal of Nature, 2013 (3): 167-171 | |
[10] |
Ge G B T, Shi Z J, Yang X H, et al. Analysis of precipitation extremes in the Qinghai-Tibetan Plateau, China: spatio-temporal characteristics and topography effects[J]. Atmosphere, 2017, 8 (7): 127
doi: 10.3390/atmos8070127 URL |
[11] | You Q L, Kang S C, Aguilar E, et al. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J]. Journal of Geophysical Research: Atmospheres, 2008, 113 (D7) |
[12] |
You Q L, Cai Z Y, Pepin N, et al. Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences[J]. Earth-Science Reviews, 2021, 217: 103625
doi: 10.1016/j.earscirev.2021.103625 URL |
[13] |
Yang J X, Huang M T, Zhai P M. Performance of the CRA-40/Land, CMFD, and ERA-Interim datasets in reflecting changes in surface air temperature over the Tibetan Plateau[J]. Journal of Meteorological Research, 2021, 35 (4): 663
doi: 10.1007/s13351-021-0196-x |
[14] |
Ding X, Lai X, Fan G Z, et al. Analysis on the applicability of reanalysis soil temperature and moisture datasets over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37 (3): 626-641
doi: 10.7522/j.issn.1000-0534.2017.00060 |
[15] |
Zhao Y, Zhou T J. Asian water tower evinced in total column water vapor: a comparison among multiple satellite and reanalysis datasets[J]. Climate Dynamics, 2020, 54 (1): 231-245
doi: 10.1007/s00382-019-04999-4 |
[16] | Wang A, Zeng X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysics, 2012, 117 |
[17] |
You Q, Min J, Zhang W, et al. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau[J]. Climate Dynamics, 2015, 45 (3-4): 791-806
doi: 10.1007/s00382-014-2310-6 URL |
[18] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测数据及与其它数据的对比[J]. 地球物理学报, 2013, 56 (4): 1102-1111. |
Wu J, Gao X J. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56 (4): 1102-1111 (in Chinese) | |
[19] |
Xu Y, Gao X J, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Science, 2009, 26 (4): 763-772
doi: 10.1007/s00376-009-9029-z URL |
[20] | Yang K, He J. China meteorological forcing dataset (1979-2018)[R]. National Tibetan Plateau Data Center, 2019 |
[21] | 任福民, 翟盘茂. 1951—1990年中国极端气温变化分析[J]. 大气科学, 1998, 22 (2): 217-227. |
Ren F M, Zhai P M. Study on changes of China’s extreme temperatures during 1951-1990[J]. Atmospheric Sciences, 1998, 22 (2): 217-227 (in Chinese) | |
[22] | 罗布坚参, 翟盘茂, 假拉, 等. 西藏高原测站降水与TRMM估测降水一致性评估[J]. 气象, 2015, 41 (9): 1119-1125. |
Luo B J C, Zhai P M, Jia L, et al. Consistency evaluation for observation and TRMM precipitation estimation in Tibetan Plateau[J]. Meteorological Monthly, 2015, 41 (9): 1119-1125 | |
[23] | 任芝花, 赵平, 张强, 等. 适用于全国自动站小时降水资料的质量控制方法[J]. 气象, 2010, 36 (7): 123-132. |
Ren Z H, Zhao P, Zhang Q, et al. Quality control procedures for hourly precipitation data from automatic weather stations in China[J]. Meteorological Monthly, 2010, 36 (7): 123-132 | |
[24] |
Yatagai A, Kamiguchi K, Arakawa O, et al. APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. Bulletin of The American Meteorological Society, 2012, 93 (9): 1401-1415
doi: 10.1175/BAMS-D-11-00122.1 URL |
[25] |
Huffman G J. Estimates of Root-Mean-Square random error for finite samples of estimated precipitation[J]. Journal of Applied Meteorology, 1997, 36 (9): 1191-1201
doi: 10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2 URL |
[26] | Huffman G J, Adler R F, Morrissey M, et al. Global precipitation at one-degree daily resolution from multisatellite observations[J]. Journal of Hydrometeorology, 2001 (2): 36-50 |
[27] | 杨昭明, 张调风. 1961—2017年青藏高原东北部雨季降水量变化及其贡献度分析[J]. 干旱区研究, 2021, 38 (1): 22-28. |
Yang Z M, Zhang T F. Analysis of precipitation change and its contribution in the rainy season in the northeast Qinghai-Tibet Plateau from 1961 to 2017[J]. Arid Zone Research, 2021, 38 (1): 22-28 (in Chinese) | |
[28] |
Zhai P, Zhang X, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18 (7): 1096-1108
doi: 10.1175/JCLI-3318.1 URL |
[29] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research Atmospheres, 2001, 106 (D7): 7183-7192
doi: 10.1029/2000JD900719 URL |
[30] | Kendall M. Rank correlation methods (4th edition)[M]. London: Charles Griffin, 1975: 202 |
[31] | Mann H B. Nonparametric tests against trend[J]. Econometrica: Journal of The Econometric Society, 1945: 245-259 |
[32] | 中国科学院《中国自然地理》编辑委员会. 中国自然地理: 总论[M]. 北京: 科学出版社, 1985. |
ECCPG (Editorial Committee of China Physical Geography, CAS). Physical geography of China: climatology[M]. Beijing: Science Press, 1985 (in Chinese) | |
[33] |
许建伟, 高艳红, 彭保发, 等. 1979—2016年青藏高原降水的变化特征及成因分析[J]. 高原气象, 2020, 39 (2): 234-244.
doi: 10.7522/j.issn.1000-0534.2019.00029 |
Xu J W, Gao Y H, Peng B F, et al. Change characteristics of precipitation and its cause during 1979-2016 over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2020, 39 (2): 234-244 (in Chinese) | |
[34] | 李林, 陈晓光, 王振宇, 等. 青藏高原区域气候变化及其差异性研究[J]. 气候变化研究进展, 2010, 6 (3): 181-186. |
Li L, Chen X G, Wang Z Y, et al. Climate change and its regional differences over the Tibetan Plateau[J]. Climate Change Research, 2010, 6 (3): 181-186 (in Chinese) | |
[35] |
杜军, 路红亚, 建军. 1961—2012年西藏极端降水事件的变化[J]. 自然资源学报, 2014, 29 (6): 990-1002.
doi: 10.11849/zrzyxb.2014.06.008 |
Du J, Lu H Y, Jian J. Change in extreme precipitation events over Tibet from 1961 to 2012[J]. Journal of Natural Resources, 2014, 29 (6): 990-1002 (in Chinese)
doi: 10.11849/zrzyxb.2014.06.008 |
|
[36] |
林厚博, 游庆龙, 焦洋, 等. 基于高分辨率格点观测数据的青藏高原降水时空变化特征[J]. 自然资源学报, 2015, 30 (2): 271-281.
doi: 10.11849/zrzyxb.2015.02.010 |
Lin H B, You Q L, Jiao Y, et al. Spatial and temporal characteristics of the precipitation over the Tibetan Plateau from 1961 to 2010 based on high resolution grid-observation dataset[J]. Journal of Natural Resources, 2015, 30 (2): 271-281 (in Chinese) | |
[37] | 冀钦, 杨建平, 陈虹举. 1961—2015年青藏高原降水量变化综合分析[J]. 冰川冻土, 2018, 40 (6): 1090-1099. |
Ji Q, Yang J P, Chen H J. Comprehensive analysis of the precipitation changes over the Tibetan Plateau during 1961-2015[J]. Journal of Glaciology and Geocryology, 2018, 40 (6): 1090-1099 (in Chinese) | |
[38] |
Sun J, Yao X P, Deng G W, et al. Characteristics and synoptic patterns of regional extreme rainfall over the Central and Eastern Tibetan Plateau in boreal summer[J]. Atmosphere, 2021, 12: 379
doi: 10.3390/atmos12030379 URL |
[39] |
Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8 (1): 38-55
doi: 10.1175/JHM560.1 URL |
[1] | TANG Wei-Qi, WU Li-Bo. Interpretation of IPCC AR6 report: new perspectives in climate governance policies and the implementation for China [J]. Climate Change Research, 2023, 19(2): 151-159. |
[2] | ZHAN Yun-Jian, CHEN Dong-Hui, LIAO Jie, JU Xiao-Hui, ZHAO Yu-Fei, REN Guo-Yu. Construction of a daily precipitation dataset of 60 city stations in China for the period 1901-2019 [J]. Climate Change Research, 2022, 18(6): 670-682. |
[3] | WANG Xia, WANG Ying, LIN Qi-Gen, LI Ning, ZHANG Xin-Ren, ZHOU Xiao-Ying. Projection of China landslide disasters population risk under climate change [J]. Climate Change Research, 2022, 18(2): 166-176. |
[4] | WANG Qian-Zhi, LIU Kai, WANG Ming. Evaluation of extreme precipitation indices performance based on NEX-GDDP downscaling data over China [J]. Climate Change Research, 2022, 18(1): 31-43. |
[5] | SUN Chen, WANG Fang, ZHOU Yue-Hua, LI Lan. An assessment on extreme precipitation events in Yangtze River basin as simulated by CWRF regional climate model [J]. Climate Change Research, 2022, 18(1): 44-57. |
[6] | HE Jia-Jun, REN Guo-Yu, ZHANG Pan-Feng. Effects of data homogenization on the estimates of temperature trend and urbanization bias: taking Beijing area as an example [J]. Climate Change Research, 2021, 17(5): 503-513. |
[7] | JIANG Han-Ying, DUAN Yi-Ran, ZHANG Zhe, CAO Li-Bin, XU Shao-Dong, ZHANG Li, CAI Bo-Feng. Study on peak CO2 emissions of typical large cities in China [J]. Climate Change Research, 2021, 17(2): 131-139. |
[8] | WANG Qing, HUANG Fu-Xiang, XIA Xue-Qi. The differences in the trends of ozone and atmospheric temperature in spring over the Tibetan Plateau [J]. Climate Change Research, 2020, 16(6): 706-713. |
[9] | ZHAO Min, ZHANG Hua, WANG Hai-Bo, ZHU Li. The change of cloud top height over East Asia during 2000-2018 [J]. Climate Change Research, 2020, 16(5): 591-599. |
[10] | XU Li, LI Qian, WANG Ying, HUANG Jing-Ling, XU Ying-Jun. Analysis of the changes in debris flow hazard in the context of climate change [J]. Climate Change Research, 2020, 16(4): 415-423. |
[11] | DING Kai-Xi, ZHANG Li-Ping, SHE Dun-Xian, ZHANG Qin, XIANG Jun-Wen. Variation of extreme precipitation in Lancang River basin under global warming of 1.5℃ and 2.0℃ [J]. Climate Change Research, 2020, 16(4): 466-479. |
[12] | Qi-Mou ZHANG,Run WANG,Tong JIANG,Song-Sheng CHEN. Projection of extreme precipitation in the Hanjiang River basin under different RCP scenarios [J]. Climate Change Research, 2020, 16(3): 276-286. |
[13] | Dian-Xiu YE,Zun-Ya WANG,Rong GAO,Rong WANG,Chan XIAO. Objective identification and climatic characters of the regional rainstorm event in China from 1961 to 2016 [J]. Climate Change Research, 2019, 15(6): 575-583. |
[14] | Hong YIN,Ying SUN. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices [J]. Climate Change Research, 2019, 15(4): 363-373. |
[15] | Qing WANG,Fu-Xiang HUANG,Xue-Qi XIA. Reversal trends of atmospheric temperature in spring over the Tibetan Plateau after 2008 and possible links with total ozone trends [J]. Climate Change Research, 2019, 15(4): 385-394. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|