|
Climate Change Research ›› 2023, Vol. 19 ›› Issue (3): 263-277.doi: 10.12006/j.issn.1673-1719.2022.225
• Changes in Climate System • Previous Articles Next Articles
LI Shuai1(), ZENG Ling2, ZHANG Cun-Jie3, XIAO Chan3, ZHANG Qiang3, GONG Wen-Ting1
Received:
2022-09-27
Revised:
2022-10-29
Online:
2023-05-30
Published:
2023-02-15
LI Shuai, ZENG Ling, ZHANG Cun-Jie, XIAO Chan, ZHANG Qiang, GONG Wen-Ting. Spatio-temporal variations and propagation from meteorological to hydrological drought in the upper Yangtze River basin over last 120 years[J]. Climate Change Research, 2023, 19(3): 263-277.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2022.225
Fig. 2 Annual variations of areal mean precipitation (a), temperature (b), potential evapotranspiration (c) over the upper Yangtze River basin, and runoff (d) at Yichang station
Fig. 3 Spatial distributions of variation trend of annual precipitation (a), mean temperature (b), and potential evapotranspiration (c) over the upper Yangtze River basin in 1901-2020
Fig. 6 Spatial distributions of maximum Spearman correlation coefficients between SRI-1 and SPEI-n at different months over the upper Yangtze River basin in 1901-2020. (“+” denotes that it has passed the significance test at the 95% confidence level)
Fig. 7 Spatial distributions of propagation time from meteorological to hydrological drought at different months over the upper Yangtze River basin in 1901-2020. (“+” denotes that it has passed the significance test at the 95% confidence level)
Fig. 8 Annual variations of maximum Spearman correlation coefficients between SRI-1 and SPEI-n at different months over the upper Yangtze River basin. (Gray bound denotes the uncertainty interval obtained by means ± standard deviations)
Fig. 9 Annual variations of propagation time from meteorological to hydrological drought at different months over the upper Yangtze River basin. (Gray bound denotes the uncertainty interval obtained by means ± standard deviations)
Fig. 11 Correlations between areal means of propagation time from meteorological to hydrological drought and humidity index (HI) at different months over the upper Yangtze River basin during 1925-1996
[1] | 黄真理, 王毅, 张丛林, 等. 长江上游生态保护与经济发展综合改革方略研究[J]. 湖泊科学, 2017, 29 (2): 257-265. |
Huang Z L, Wang Y, Zhang C L, et al. Strategic study on comprehensive reform for ecological protection and economic development of the upper Yangtze River[J]. Journal of Lake Sciences, 2017, 29 (2): 257-265 (in Chinese)
doi: 10.18307/2017.0201 URL |
|
[2] | 姚磊, 陈盼盼, 胡利利, 等. 长江上游流域水电开发现状与存在的问题[J]. 绵阳师范学院学报, 2016, 35 (2): 91-97. |
Yao L, Chen P P, Hu L L, et al. Research on the status and problems of the upper Yangtze River hydropower development[J]. Journal of Mianyang Teachers’ College, 2016, 35 (2): 91-97 (in Chinese) | |
[3] | 周德刚, 黄荣辉, 黄刚. 近几十年来长江上游流域气候和植被覆盖的变化[J]. 大气科学学报, 2009, 32 (3): 377-385. |
Zhou D G, Huang R H, Huang G. Variations of climate and vegetation cover over the upper reaches of Yangtze River in the past decades[J]. Transactions of Atmospheric Sciences, 2009, 32 (3): 377-385 (in Chinese) | |
[4] | 孙甲岚, 雷晓辉, 蒋云钟, 等. 长江流域上游气温、降水及径流变化趋势分析[J]. 水电能源科学, 2012, 30 (5): 1-4. |
Sun J L, Lei X H, Jiang Y Z, et al. Variation trend analysis of meteorological variables and runoff in upper reaches of Yangtze River[J]. Water Resources and Power, 2012, 30 (5): 1-4 (in Chinese) | |
[5] |
张强. 科学解读“2022年长江流域重大干旱”[J]. 干旱气象, 2022, 40 (4): 545-548.
doi: 10.11755/j.issn.1006-7639(2022)-04-0545 |
Zhang Q. Scientific interpretation of severe drought in the Yangtze River basin[J]. Journal of Arid Meteorology, 2022, 40 (4): 545-548 (in Chinese) | |
[6] |
王艳君, 姜彤, 刘波. 长江流域实际蒸发量的变化趋势[J]. 地理学报, 2010, 65 (9): 1079-1088.
doi: 10.11821/xb201009005 |
Wang Y J, Jiang T, Liu B. Trends of estimated and simulated actual evapotranspiration in the Yangtze River basin[J]. Acta Geographica Sinica, 2010, 65 (9): 1079-1088 (in Chinese)
doi: 10.11821/xb201009005 |
|
[7] | 李帅, 高玉磊, 杜涛, 等. 气候变化下三峡水库防洪调度方式优化与实践[J]. 中国防汛抗旱, 2018, 28 (11): 44-48. |
Li S, Gao Y L, Du T, et al. Optimization and practice of flood control operation mode for Three Gorges Reservoir under climate change[J]. China Flood & Drought Management, 2018, 28 (11): 44-48 (in Chinese) | |
[8] | 秦鹏程, 刘敏, 杜良敏, 等. 气候变化对长江上游径流影响预估[J]. 气候变化研究进展, 2019, 15 (4): 405-415. |
Qin P C, Liu M, Du L M, et al. Climate change impacts on runoff in the upper Yangtze River basin[J]. Climate Change Research, 2019, 15 (4): 405-415 (in Chinese) | |
[9] | 郭海晋, 陈玺. 长江上游径流持续偏枯地区贡献度及成因研究[J]. 水资源研究, 2017, 6 (4): 309-316. |
Guo H J, Chen X. Spatial contribution and cause analysis for runoff decreasing in the upstream of Yangtze River[J]. Journal of Water Resources Research, 2017, 6 (4): 309-316 (in Chinese)
doi: 10.12677/JWRR.2017.64037 URL |
|
[10] | 许继军, 杨大文, 雷志栋, 等. 长江上游干旱评估方法初步研究[J]. 人民长江, 2008, 39 (11): 1-5. |
Xu J J, Yang D W, Lei Z D, et al. Preliminary research on drought assessment method for the upper Yangtze River basin[J]. Yangtze River, 2008, 39 (11): 1-5 (in Chinese) | |
[11] | 王雨茜, 杨肖丽, 任立良, 等. 长江上游气温、降水和干旱的变化趋势研究[J]. 人民长江, 2017, 48 (20): 39-44. |
Wang Y Q, Yang X L, Ren L L, et al. Variation trend analysis of temperature, precipitation and drought in upper Yangtze River basin[J]. Yangtze River, 2017, 48 (20): 39-44 (in Chinese) | |
[12] | 洪兴骏, 郭生练. 长江上游水文干旱评估及其不确定性分析[J]. 中国防汛抗旱, 2018, 28 (10): 14-20. |
Hong X J, Guo S L. Hydrological drought assessment and uncertainty analysis for the upper Yangtze River[J]. China Flood & Drought Management, 2018, 28 (10): 14-20 (in Chinese) | |
[13] | 张园园, 肖恒, 俞淞, 等. 基于可变模糊评价模型的长江上游气象干旱评价[J]. 水电能源科学, 2018, 36 (9): 14-18. |
Zhang Y Y, Xiao H, Yu S, et al. Comprehensive assessment of meteorological drought based on the variable fuzzy evaluation model in the upper reaches of Yangtze River basin[J]. Water Resources and Power, 2018, 36 (9): 14-18 (in Chinese) | |
[14] | 吴志勇, 徐征光, 肖恒, 等. 基于模拟土壤含水量的长江上游干旱事件时空特征分析[J]. 长江流域资源与环境, 2018, 27 (1): 176-184. |
Wu Z Y, Xu Z G, Xiao H, et al. Spatio-temporal analysis of drought events in the upper reaches of Yangtze River basin based on simulation of soil moisture[J]. Resources and Environment in The Yangtze Basin, 2018, 27 (1): 176-184 (in Chinese) | |
[15] | 贺晓婧, 荣艳淑. 长江流域上游干旱特征分析[J]. 水电能源科学, 2020, 38 (1): 1-4. |
He X J, Rong Y S. Analysis of drought characteristics in the upper reaches of the Yangtze River basin[J]. Water Resources and Power, 2020, 38 (1): 1-4 (in Chinese) | |
[16] | 张茜, 刘冀, 魏榕, 等. 基于SPEI指数的长江经济带上游干湿时空演变特征分析[J]. 水土保持研究, 2021, 28 (4): 203-211. |
Zhang Q, Liu J, Wei R, et al. Analysis on the spatial and temporal characteristics of dry and wet evolution of economic belt in the upper reaches of Yangtze River based on SPEI index[J]. Research of Soil and Water Conservation, 2021, 28 (4): 203-211 (in Chinese) | |
[17] |
张强, 韩兰英, 张立阳, 等. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29 (1): 80-91.
doi: 1001-8166(2014)01-0080-12 |
Zhang Q, Han L Y, Zhang L Y, et al. Analysis on the character and management strategy of drought disaster and risk under the climatic warming[J]. Advances in Earth Science, 2014, 29 (1): 80-91 (in Chinese)
doi: 1001-8166(2014)01-0080-12 |
|
[18] | 许怡然, 鲁帆, 谢子波, 等. 潮白河流域气象水文干旱特征及其响应关系[J]. 干旱地区农业研究, 2019, 37 (2): 220-228. |
Xu Y R, Lu F, Xie Z B, et al. Characteristics and responses of hydrological and meteorological drought in Chaobai River basin[J]. Agricultural Research in The Arid Areas, 2019, 37 (2): 220-228 (in Chinese) | |
[19] | 马岚. 气象干旱向水文干旱传播的动态变化及其驱动力研究[D]. 西安: 西安理工大学, 2019. |
Ma L. Dynamic change of propagation from meteorological drought to hydrological drought and the driving forces[D]. Xi’an: Xi’an University of Technology, 2019 (in Chinese) | |
[20] |
Peña-Gallardo M, Vicente-Serrano S M, Hannaford J, et al. Complex influences of meteorological drought time-scales on hydrological droughts in natural basins of the contiguous Unites States[J]. Journal of Hydrology, 2018, 568: 611-625
doi: 10.1016/j.jhydrol.2018.11.026 URL |
[21] |
Wu J W, Miao C Y, Zheng H Y, et al. Meteorological and hydrological drought on the loess Plateau, China: evolutionary characteristics, impact, and propagation[J]. Journal of Geophysical Research: Atmospheres, 2018, 123 (20): 11569-11584
doi: 10.1029/2018JD029145 URL |
[22] |
Huang S Z, Li P, Huang Q, et al. The propagation from meteorological to hydrological drought and its potential influence factors[J]. Journal of Hydrology, 2017, 547: 184-195
doi: 10.1016/j.jhydrol.2017.01.041 URL |
[23] | 刘永佳, 黄生志, 方伟, 等. 不同季节气象干旱向水文干旱的传播及其动态变化[J]. 水利学报, 2021, 52 (1): 93-102. |
Liu Y J, Huang S Z, Fang W, et al. Propagation and dynamic change of meteorological drought to hydrological drought in different seasons[J]. Journal of Hydraulic Engineering, 2021, 52 (1): 93-102 (in Chinese) | |
[24] |
Xu Y, Zhang X, Wang X, et al. Propagation from meteorological drought to hydrological drought under the impact of human activities: a case study in Northern China[J]. Journal of Hydrology, 2019, 579: 124147
doi: 10.1016/j.jhydrol.2019.124147 URL |
[25] |
Zhang X, Hao Z C, Singh V P, et al. Drought propagation under global warming: characteristics, approaches, processes, and controlling factors[J]. Science of The Total Environment, 2022, 838: 156021
doi: 10.1016/j.scitotenv.2022.156021 URL |
[26] | 张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78 (3): 500-521. |
Zhang Q, Yao Y B, Li Y H, et al. Progress and prospect on the study of causes and variation regularity of droughts in China[J]. Acta Meteorologica Sinica, 2020, 78 (3): 500-521 (in Chinese) | |
[27] |
Rangecroft S, van Loon A F, Maureira H, et al. An observation-based method to quantify the human influence on hydrological drought: upstream-downstream comparison[J]. Hydrological Science Journal, 2019, 64 (3): 276-287
doi: 10.1080/02626667.2019.1581365 URL |
[28] |
van Loon A F, Stahl K, Di Baldassarre G, et al. Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches[J]. Hydrology and Earth System Sciences, 2016, 20 (9): 3631-3650
doi: 10.5194/hess-20-3631-2016 URL |
[29] | 刘玉婷, 许继军, 刘思敏, 等. 长江上游地区生态需水量变化研究[J]. 水利水电技术, 2021, 52 (8): 120-131. |
Liu Y T, Xu J J, Liu S M, et al. Study on change of eco-water demand in region of upper Yangtze River[J]. Water Resources and Hydropower Engineering, 2021, 52 (8): 120-131 (in Chinese) | |
[30] | 郑守仁. 三峡工程利用洪水资源与发挥综合效益问题探讨[J]. 人民长江, 2013, 44 (15): 1-6. |
Zheng S R. Discussion on utilization of flood resources and comprehensive benefits of Three Gorges project[J]. Yangtze River, 2013, 44 (15): 1-6 (in Chinese) | |
[31] | 水利部. 水利部关于2021年长江流域水工程联合调度运用计划的批复 [R/OL]. 2021 [2022-04-01]. http://www.mwr.gov.cn/zwgk/gknr/202101/t20210107_1495364.html. |
Ministry of Water Resources of China. Reply of joint dispatching plan for water projects in the Yangtze River basin [R/OL]. 2021 [2022-04-01]. http://www.mwr.gov.cn/zwgk/gknr/202101/t20210107_1495364.html (in Chinese) | |
[32] | Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-guidelines for computing crop water requirements:FAO irrigation and drainage 56[M]. Rome: UN, 1998: 1-15 |
[33] | 程志刚, 张渊萌, 徐影. 基于CMIP5模式集合预估21世纪中国气候带变迁趋势[J]. 气候变化研究进展, 2015, 11 (2): 93-101. |
Cheng Z G, Zhang Y M, Xu Y. Projection of climate zone shifts in the 21st century in China based on CMIP5 models data[J]. Climate Change Research, 2015, 11 (2): 93-101 (in Chinese) | |
[34] |
Shi H Y, Li T J, Wei J H. Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the Three-River Headwaters region[J]. Journal of Hydrology, 2017, 548: 322-332
doi: 10.1016/j.jhydrol.2017.03.017 URL |
[35] | 张慕琪, 闻新宇, 包赟, 等. 基于人工神经网络开发中国地区统计降尺度气候预估数据[J]. 北京大学学报 (自然科学版), 2022, 58 (2): 221-233. |
Zhang M Q, Wen X Y, Bao Y, et al. Statistical downscaled climate projection dataset for China using artificial neural network[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58 (2): 221-233 (in Chinese) | |
[36] |
Ekström M, Jones P D, Fowler H J, et al. Regional climate model data used within the SWURVE project 1: projected changes in seasonal patterns and estimation of PET[J]. Hydrology and Earth System Sciences, 2007, 11 (3): 1069-1083
doi: 10.5194/hess-11-1069-2007 URL |
[37] |
Zhang D, Zhang Q, Werner A D, et al. Grace-based hydrological drought evaluation of the Yangtze River basin, China[J]. Journal of Hydrometeorology, 2016, 17 (3): 811-828
doi: 10.1175/JHM-D-15-0084.1 URL |
[38] | 李峥嵘, 彭涛, 林青霞, 等. 三峡水库影响下长江中下游水文干旱演变及对气象干旱的响应[J]. 湖泊科学, 2022, 34 (5): 1683-1696. |
Li Z R, Peng T, Lin Q X, et al. Hydrological drought evolution and its response to meteorological drought in the middle-lower reach of the Yangtze River triggered by Three Gorges Reservoir[J]. Journal of Lake Sciences, 2022, 34 (5): 1683-1696 (in Chinese)
doi: 10.18307/2022.0521 URL |
|
[39] | Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]// Proceedings of The 8th Conference on Applied Climatology. Boston, MA: American Meteorological Society, 1993: 179-183 |
[40] |
Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23 (7): 1696-1718
doi: 10.1175/2009JCLI2909.1 URL |
[41] | Shukla S, Wood A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters, 2008, 35: L02405 |
[42] | 石朋, 唐汉, 瞿思敏, 等. 西南地区气象干旱向水文干旱传播特征[J/OL]. 水资源保护, 2022 [2022-09-01]. . |
Shi P, Tang H, Qu S M, et al. Propagation from meteorological drought to hydrological drought in Southwest China[J/OL]. Water Resources Protection, 2022 [2022-09-01]. (in Chinese) | |
[43] |
Li S, Xiong L H, Dong L H, et al. Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003-2011[J]. Hydrological Processes, 2013, 27 (26): 3981-3993
doi: 10.1002/hyp.v27.26 URL |
[44] | 张强, 邹旭恺, 肖风劲, 等.气象干旱等级:GB/T 20481—2006 [S]. 北京: 中国标准出版社, 2006. |
Zhang Q, Zou X K, Xiao F J, et al.Grade of meteorological drought:GB/T 20481—2006 [S]. Beijing: China Standard Press, 2006 (in Chinese) | |
[45] | 黄小燕, 张明军, 贾文雄, 等. 中国西北地区地表干湿变化及影响因素[J]. 水科学进展, 2011, 22 (2): 151-159. |
Huang X Y, Zhang M J, Jia W X, et al. Variations of surface humidity and its influential factors in Northwest China[J]. Advances in Water Science, 2011, 22 (2): 151-159 (in Chinese) | |
[46] | 申双和, 张方敏, 盛琼. 1975—2004年中国湿润指数时空变化特征[J]. 农业工程学报, 2009, 25 (1): 11-15. |
Shen S H, Zhang F M, Sheng Q. Spatio-temporal changes of wetness index in China from 1975 to 2004[J]. Transactions of The CSAE, 2009, 25 (1): 11-15 (in Chinese) | |
[47] |
López J, Francés F. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates[J]. Hydrology and Earth System Sciences, 2013, 17 (8): 3189-3203
doi: 10.5194/hess-17-3189-2013 URL |
[48] | 王绍武, 叶瑾琳, 龚道溢, 等. 近百年中国年气温序列的建立[J]. 应用气象学报, 1998, 9 (4): 392-401. |
Wang S W, Ye J L, Gong D Y, et al. Construction of mean annual temperature series for the last one hundred years in China[J]. Journal of Applied Meteorological Science, 1998, 9 (4): 392-401 (in Chinese) | |
[49] | 王林, 陈文. 近百年西南地区干旱的多时间尺度演变特征[J]. 气象科技进展, 2012, 2 (4): 21-26. |
Wang L, Chen W. Characteristics of multi-timescale variabilities of the drought over last 100 years in Southwest China[J]. Advances in Meteorological Science and Technology, 2012, 2 (4): 21-26 (in Chinese) | |
[50] | 国务院新闻办公室. 中国气象局2011年9月份新闻发布会 [N/OL]. 2011 [2022-08-12]. http://www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/qxj/Document/997783/997783.htm. |
The State Council Information Office of China. China Meteorological Administration press conference in September 2011 [N/OL]. 2011 [2022-08-12]. http://www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/qxj/Document/997783/997783.htm (in Chinese) | |
[51] |
Gevaert A I, Veldkamp T I E, Ward P J. The effect of climate type on timescales of drought propagation in an ensemble of global hydrological models[J]. Hydrology and Earth System Sciences, 2018, 22 (9): 4649-4665
doi: 10.5194/hess-22-4649-2018 URL |
[52] | 仲志余, 王学敏, 丁毅. 水库群联合调度全周期-自适应-嵌套式建模方法[J]. 人民长江, 2021, 52 (11): 1-8. |
Zhong Z Y, Wang X M, Ding Y. Research on full cycle-adaptive-nested modeling method for joint operation of reservoir groups[J] Yangtze River, 2021, 52 (11): 1-8 (in Chinese) | |
[53] |
Wu J F, Liu Z Y, Yao H X, et al. Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought[J]. Journal of Hydrology, 2018, 563: 726-736
doi: 10.1016/j.jhydrol.2018.06.053 URL |
[54] | 薛联青, 白青月, 刘远洪. 人类活动影响下塔里木河流域气象-水文干旱传播规律研究[J/OL]. 水资源保护, 2022 [2022-08-12]. https://kns.cnki.net/kcms/detail/32.1356.tv.20220330.1043.002.html. |
Xue L Q, Bai Q Y, Liu Y H. Study on the propagation of meteorological-hydrological drought in Tarim River basin under the impact of human activities[J/OL]. Water Resources Protection, 2022 [2022-08-12]. https://kns.cnki.net/kcms/detail/32.1356.tv.20220330.1043.002.html (in Chinese) | |
[55] | 刘冀, 杨少康, 常文娟, 等. 长江上游流域地表干燥度指数的变化及相关性分析[J/OL]. 水文, 2022 [2022-08-12]. https://doi.org/10.19797/j.cnki.1000-0852.20210164. |
Liu J, Yang S K, Chang W J, et al. Changes and correlation analysis of surface aridity index in the upper Yangtze River basin[J]. Journal of China Hydrology, 2022 [2022-08-12]. https://doi.org/10.19797/j.cnki.1000-0852.20210164 (in Chinese) | |
[56] | 陈利者, 李致家, 李巧玲, 等. 我国降雨径流关系的区域规律研究[J]. 水力发电, 2014, 40 (3): 8-11. |
Chen L Z, Li Z J, Li Q L, et al. Research on regional law of rainfall runoff relationship of China[J]. Water Power, 2014, 40 (3): 8-11 (in Chinese) | |
[57] | 梁志明, 戴凌全, 侯雨坤, 等. 长江上游流域水库群调蓄对三峡-葛洲坝梯级电站运行影响分析[J]. 三峡生态环境监测, 2020, 5 (1): 68-77. |
Liang Z M, Dai L Q, Hou Y K, et al. Impact of dispatching of reservoirs in the upper Yangtze River on the operation of Three Gorges-Gezhouba cascade hydroelectric stations[J]. Ecology and Environmental Monitoring of Three Gorges, 2020, 5 (1): 68-77 (in Chinese) | |
[58] | 张康, 杨明祥, 梁藉, 等. 长江上游水库群联合调度下的河流水文情势研究[J]. 人民长江, 2019, 50 (2): 107-114. |
Zhang K, Yang M X, Liang J, et al. Study on river hydrology regime under joint operation of cascade reservoirs in upper Yangtze River[J]. Yangtze River, 2019, 50 (2): 107-114 (in Chinese) | |
[59] | 罗志文, 王小军, 尹义星, 等. 青岛市气象和水文干旱变化特征分析[J]. 水文, 2019, 39 (5): 84-90. |
Luo Z W, Wang X J, Yin Y X, et al. Characteristics of meteorological and hydrological drought change in Qingdao city[J]. Journal of China Hydrology, 2019, 39 (5): 84-90 (in Chinese) | |
[60] |
He X, Wada Y, Wanders N, et al. Intensification of hydrological drought in California by human water management[J]. Geophysical Research Letters, 2017, 44: 1777-1785
doi: 10.1002/grl.v44.4 URL |
[61] | 涂新军, 陈晓宏, 赵勇, 等. 变化环境下东江流域水文干旱特征及缺水响应[J]. 水科学进展, 2016, 27 (6): 810-821. |
Tu X J, Chen X H, Zhao Y, et al. Responses of hydrological drought properties and water shortage under changing environments in Dongjiang River basin[J]. Advances in Water Science, 2016, 27 (6): 810-821 (in Chinese) | |
[62] |
Forootan E, Khaki M, Schumacher M, et al. Understanding the global hydrological droughts of 2003-2016 and their relationships with teleconnections[J]. Science of The Total Environment, 2019, 650: 2587-2604
doi: 10.1016/j.scitotenv.2018.09.231 URL |
[63] |
Wang Y X, Li J Z, Zhang T, et al. Changes in drought propagation under the regulation of reservoirs and water diversion[J]. Theoretical and Applied Climatology, 2019, 138: 701-711
doi: 10.1007/s00704-019-02839-3 URL |
[64] | 王文, 王靖淑, 陶奕源, 等. 人类活动对水文干旱形成与发展的影响研究进展[J]. 水文, 2020, 40 (3): 1-8. |
Wang W, Wang J S, Tao Y Y, et al. Review of human impacts on formation and development of hydrologic drought[J]. Journal of China Hydrology, 2020, 40 (3): 1-8 (in Chinese) |
[1] | . A Daily Meteorological Drought Indicator Based on Standardized Antecedent Precipitation Index and Its Spatial-Temperal Variation [J]. Climate Change Research, 2012, 8(3): 157-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|