|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (1): 37-47.doi: 10.12006/j.issn.1673-1719.2023.157
• Impacts of Climate Change • Previous Articles Next Articles
LIU Zhe1,4,5, WANG Fei5, HAN Qin-Mei6, JIANG Lu1,7, SHI Pei-Jun1,2,3()
Received:
2023-07-20
Revised:
2023-09-21
Online:
2024-01-30
Published:
2024-01-03
LIU Zhe, WANG Fei, HAN Qin-Mei, JIANG Lu, SHI Pei-Jun. Analysis of the impact of severe drought in the upper Yangtze River basin on the hydroelectricity production of the Three Gorges Hydropower Station in 2022[J]. Climate Change Research, 2024, 20(1): 37-47.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2023.157
Fig. 2 The average change rate of precipitation, water inflow and water outflow in each month of 2022 compared with 2013-2021 average in the upper Yangtze River basin
Fig. 3 Average changes of Three Gorges reservoir water level, downstream water level and water head in each month of 2022 compared with 2013-2021 average
Fig. 5 The comparison between the calculated annual hydroelectricity production of Three Gorges Hydropower Station and the actual annual hydroelectricity production
Fig. 7 Variation of the calculated hydroelectricity production by month in 2022 compared with the average hydroelectricity production in 2013-2021 in Three Gorges Hydropower Station
Fig. 8 Comparison of the calculated daily hydroelectricity production in 2022 with average hydroelectricity production in 2013-2021 in Three Gorges Hydropower Station
![]() |
Table 3 The correlation coefficient between the amount of water in storage and the relevant factors of hydroelectricity production in each month in the Three Gorges reservoir
![]() |
Fig. 13 The correlation coefficient between the amount of monthly hydroelectricity production and SPI on 1-24 month time scale in the Three Gorges reservoir
[1] | 夏军, 陈进, 佘敦先. 2022年长江流域极端干旱事件及其影响与对策[J]. 水利学报, 2022, 53 (10): 1143-1153. |
Xia J, Chen J, She D X. Impacts and countermeasures of extreme drought in the Yangtze River basin in 2022[J]. Journal of Hydraulic Engineering, 2022, 53 (10): 1143-1153 (in Chinese) | |
[2] | 姜雨彤, 侯爱中, 郝增超, 等. 长江流域2022年高温干旱演变过程评估[J/OL]. 水力发电学报, 2023 [2023-04-02]. http://kns.cnki.net/kcms/detail/11.2241.TV.20230322.1452.002.html. |
Jiang Y T, Hou A Z, Hao Z C, et al. Evolution of hot droughts in the Yangtze River basin in 2022[J/OL]. Journal of Hydroelectric Engineering, 2023 [2023-04-02]. http://kns.cnki.net/kcms/detail/11.2241.TV.20230322.1452.002.html (in Chinese) | |
[3] |
林纾, 李红英, 黄鹏程, 等. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象, 2022, 40 (5): 748-763.
doi: 10.11755/j.issn.1006-7639(2022)-05-0748 |
Lin S, Li H Y, Huang P C, et al. Characteristics of high temperature, drought and circulation situation in summer 2022 in China[J]. Journal of Arid Meteorology, 2022, 40 (5): 748-763 (in Chinese) | |
[4] | 冯宝飞, 邱辉, 纪国良. 2022年夏季长江流域气象干旱特征及成因初探[J]. 人民长江, 2022, 53 (12): 6-15. |
Feng B F, Qiu H, Ji G L. Characteristics and causes of meteorological drought over Changjiang River basin in summer of 2022[J]. Yangtze River, 2022, 53 (12): 6-15 (in Chinese) | |
[5] |
李忆平, 张金玉, 岳平, 等. 2022年夏季长江流域重大干旱特征及其成因研究[J]. 干旱气象, 2022, 40 (5): 733-747.
doi: 10.11755/j.issn.1006-7639(2022)-05-0733 |
Li Y P, Zhang J Y, Yue P, et al. Study on characteristics of severe drought event over Yangtze River basin in summer of 2022 and its causes[J]. Journal of Arid Meteorology, 2022, 40 (5): 733-747 (in Chinese) | |
[6] | 李莹, 叶殿秀, 高歌, 等. 2022年夏季中国气候特征及主要天气气候事件[J]. 大气科学学报, 2023, 46 (1): 110-118. |
Li Y, Ye D X, Gao G, et al. Climate characteristics and major meteorological events in China during the summer of 2022[J]. Transactions of Atmospheric Sciences, 2023, 46 (1): 110-118 (in Chinese) | |
[7] | 夏智宏, 刘敏, 秦鹏程, 等. 2022年长江流域高温干旱过程及其影响评估[J]. 人民长江, 2023, 54 (2): 21-28. |
Xia Z H, Liu M, Qin P C, et al. Development process of high temperature and drought events over Yangtze River basin in 2022 and assessment on its influences[J]. Yangtze River, 2023, 54 (2): 21-28 (in Chinese) | |
[8] |
张强. 科学解读“2022年长江流域重大干旱”[J]. 干旱气象, 2022, 40 (4): 545-548.
doi: 10.11755/j.issn.1006-7639(2022)-04-0545 |
Zhang Q. Scientific interpretation of severe drought in the Yangtze River basin[J]. Journal of Arid Meteorology, 2022, 40 (4): 545-548 (in Chinese) | |
[9] | 邹旭恺, 高荣, 陈鲜艳, 等. 2022年长江流域夏伏旱监测评估[J]. 中国防汛抗旱, 2022, 32 (10): 12-16. |
Zou X K, Gao R, Chen X Y, et al. Monitoring and assessment of summer drought in the Yangtze River basin in 2022[J]. China Flood & Drought Management, 2022, 32 (10): 12-16 (in Chinese) | |
[10] |
范进进, 秦鹏程, 史瑞琴, 等. 气候变化背景下湖北省高温干旱复合灾害变化特征[J]. 干旱气象, 2022, 40 (5): 780-790.
doi: 10.11755/j.issn.1006-7639(2022)-05-0780 |
Fan J J, Qin P C, Shi R Q, et al. Characteristics of compound hot and drought disasters in Hubei under the background of climate change[J]. Journal of Arid Meteorology, 2022, 40 (5): 780-790 (in Chinese) | |
[11] | 文伏波, 邱忠恩. 长江流域水能资源利用与可持续发展[J]. 世界科技研究与发展, 1998, (5): 7-14. |
Wen F B, Qiu Z E. Hydropower resources utilization and sustainable development in Changjiang River valley[J]. World Sci-Tech R&D, 1998, (5): 7-14 (in Chinese) | |
[12] | 国网四川省电力公司. 国网四川电力7月售电量刷新单月最高纪录[EB/OL]. 2022 [2022-09-20]. http://www.sc.sgcc.com.cn. |
State Grid Sichuan Electric Company. State Grid Sichuan Electric Company’s July power sales set a new one-month high record[EB/OL]. 2022 [2022-09-20]. http://www.sc.sgcc.com.cn (in Chinese) | |
[13] | 四川省人民政府. 全社会节电行动后实际电力负荷有下降[EB/OL]. 2022 [2022-09-20]. https://www.sc.gov.cn. |
The People’s Government of Sichuan Province. There was a drop in actual power load following the community-wide power saving initiative[EB/OL]. 2022 [2022-09-20]. https://www.sc.gov.cn (in Chinese) | |
[14] | 袁家海. 四川高温限电痛点在何处, 如何防止重演? [EB/OL]. 2022 [2022-09-20]. https://new.qq.com. |
Yuan J H. Sichuan high-temperature power restrictions in the pain points, how to prevent a repeat? [EB/OL]. 2022 [2022-09-20]. https://new.qq.com (in Chinese) | |
[15] | 郭莹. “丰水期”变“枯水季”水电大省四川如何渡难关[EB/OL]. 2022 [2022-09-20]. http://sc.people.com.cn. |
Guo Y. “Abundant water season” into “dry season” hydropower province of Sichuan how to tide over the difficulties[EB/OL]. 2022 [2022-09-20]. http://sc.people.com.cn (in Chinese) | |
[16] | 四川省人民政府. 水电大省四川为何会电力短缺[EB/OL]. 2022 [2022-09-20]. https://www.sc.gov.cn. |
The People’s Government of Sichuan Province. Why is there a power shortage in Sichuan, a major province of hydroelectric power[EB/OL]. 2022 [2022-09-20]. https://www.sc.gov.cn (in Chinese) | |
[17] | Wan W, Zhao J, Popat E, et al. Analyzing the impact of streamflow drought on hydroelectricity production: a global-scale study[J]. Water Resources Research, 2021, 57: 1-25 |
[18] | 胡赣生, 晏红. 三峡水电站的水头特点及水轮机质量保证[J]. 水电站机电技术, 2001 (4): 1-4. |
Hu G S, Yan H. Head characteristics and turbine quality assurance of the Three Gorges Hydropower Station[J]. Mechanical & Electrical Technique of Hydropower Station, 2001 (4): 1-4 (in Chinese) | |
[19] | Wang Y F, Chen X W, Chen Y, et al. Flood/drought event identification using an effective indicator based on the correlations between multiple time scales of the Standardized Precipitation Index and river discharge[J]. Theoretical and Applied Climatology, 2015, 17 (5): 1-10 |
[20] | 马岚. 气象干旱向水文干旱传播的动态变化及其驱动力研究[D]. 西安: 西安理工大学, 2019. |
Ma L. Dynamic change of propagation from meteorological drought to hydrological drought and the driving forces[D]. Xi’an: Xi’an University of Technology, 2019 (in Chinese) | |
[21] | 刘永佳, 黄生志, 方伟, 等. 不同季节气象干旱向水文干旱的传播及其动态变化[J]. 水利学报, 2021, 52 (1): 93-102. |
Liu Y J, Huang S Z, Fang W, et al. Propagation and dynamic change of meteorological drought to hydrological drought in different seasons[J]. Journal of Hydraulic Engineering, 2021, 52 (1): 93-102 (in Chinese) | |
[22] | 武慧敏, 吕爱锋, 张文翔. 巴音河流域水文干旱对气象干旱的响应[J]. 南水北调与水利科技 (中英文), 2022, 20 (3): 459-467. |
Wu H M, Lyu A F, Zhang W X. Response of hydrologic drought to meteorological drought in the Bayin River basin[J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20 (3): 459-467 (in Chinese) | |
[23] |
Lorenzolacruz J, Vicenteserrano S, Gonzálezhidalgo, et al. Hydrological drought response to meteorological drought in the Iberian Peninsula[J]. Climate Research, 2013, 58 (2): 117-131
doi: 10.3354/cr01177 URL |
[24] | Wilhite D A. Drought: a global assessment[M]. New York: Routledge, 2000 |
[25] |
Huang S, Li P, Huang Q, et al. The propagation from meteorological to hydrological drought and its potential influence factors[J]. Journal of Hydrology, 2017, 547: 184-195
doi: 10.1016/j.jhydrol.2017.01.041 URL |
[26] |
Peters E, Bier G, van Lanen H, et al. Propagation and spatial distribution of drought in a groundwater catchment[J]. Journal of Hydrology, 2006, 321 (1-4): 257-275
doi: 10.1016/j.jhydrol.2005.08.004 URL |
[27] |
Mehran A, Mazdiyasni O, AghaKouchak A. A hybrid framework for assessing socioeconomic drought: linking climate variability, local resilience, and demand[J]. Journal of Geophysical Research Atmospheres, 2015, 120: 1-14
doi: 10.1002/jgrd.v120.1 URL |
[28] | 门玉丽, 夏军, 叶爱中. 水位流量关系曲线的理论求解研究[J]. 水文, 2009, 29 (1): 1-3, 62. |
Men Y L, Xia J, Ye A Z. Theoretical equation of stage-discharge relation curve[J]. Journal of China Hydrology, 2009, 29 (1): 1-3, 62 (in Chinese) |
[1] | LI Shuai, ZENG Ling, ZHANG Cun-Jie, XIAO Chan, ZHANG Qiang, GONG Wen-Ting. Spatio-temporal variations and propagation from meteorological to hydrological drought in the upper Yangtze River basin over last 120 years [J]. Climate Change Research, 2023, 19(3): 263-277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|