[1] | WMO. WMO greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on global observations through 2015[M]. WMO. 2016 | [2] | WMO. WMO greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on global observations through 2016[M]. WMO . 2017 | [3] | IPCC. Climate change 2014: synthesis report summary for policymakers chapter [M]. Cambridge: Cambridge University Press, 2015 | [4] | 王剑琼, 薛丽梅, 张国庆 , 等. 不同方法测量大气二氧化碳浓度的特征分析[J]. 青海环境, 2015 (2):75-78 | [5] | Gloor M, Fan S M, Pacala S , et al. Optimal sampling of the atmosphere for purpose of inverse modeling: a model study[J]. Global Biogeochemical Cycles, 2000,14(1):407-428 | [6] | Masarie K A, Tans P P . Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record[J]. Journal of Geophysical Research, 1995,100(D6):11593 | [7] | 张兴赢, 张鹏, 方宗义 , 等. 应用卫星遥感技术监测大气痕量气体的研究进展[J]. 气象, 2007 (7):3-14 | [8] | Engelen R J, Denning A S, Gurney K R , et al. Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras[J]. Journal of Geophysical Research, 2001,106(D17):20055-20068 | [9] | Wunch D, Toon G C, Blavier J F L , et al. The total carbon column observing network[J]. Philosophical Transactions of The Royal Society A-Mathematical Physical and Engineering Sciences, 2011,369(1943):2087-2112 | [10] | Kuze A, Suto H, Nakajima M , et al. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring[J]. Applied Optics, 2009,48(35):6716-6733 | [11] | 侯姗姗, 雷莉萍, 关贤华 . 温室气体观测卫星GOSAT及产品[J]. 遥感技术与应用, 2013,28(2):269-275 | [12] | Crisp D, Atlas R M, Breon F M , et al. The Orbiting Carbon Observatory (OCO) mission[J]. Advances in Space Research, 2004,34(4):700-709 | [13] | Thompson D R, Chris Benner D, Brown L R , et al. Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012,113(17):2265-2276 | [14] | Bi Y M, Wang Q, Yang Z D , et al. Advances on space-based hyper spectral remote sensing for atmospheric CO2 in near infrared band[J]. Chinese Optics, 2015,8(5):725-735 | [15] | 刘毅, 杨东旭, 蔡兆男 . 中国碳卫星大气CO2反演方法: GOSAT数据初步应用[J]. 科学通报, 2013 (11):996-999 | [16] | Platt U, Perner D, P?tz H W . Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption[J]. Journal of Geophysical Research Oceans, 1979,84(C10):6329-6335 | [17] | Buchwitz M, Rozanov V V, Burrows J P . A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY[J]. Journal of Geophysical Research, 2000,D12(105):15231-15245 | [18] | Buchwitz M, de Beek R, No?l S, #magtechI# et al . Carbon monoxide, methane and carbon dioxide over China retrieved from SCIAMACHY/ENVISAT by WFM-DOAS[J]. Proceedings of the 2005 Dragon Symposium, 2006: 611 | [19] | Buchwitz M, Beek R D, L S N , et al. Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set[J]. Atmospheric Chemistry & Physics, 2005,5(12):3313-3329 | [20] | 霍彦峰 . 近红外波段超精细太阳光谱的地基观测及CO2反演[D]. 兰州: 兰州大学, 2015 | [21] | Barkley M P, Frie ?U, Monks P S . Measuring atmospheric CO2 from space using Full Spectral Initiation (FSI) WFM-DOAS[J]. Atmospheric Chemistry & Physics, 2006,6(11):2765-2807 | [22] | Schneising O, Buchwitz M, Reuter M , et al. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY[J]. Atmospheric Chemistry and Physics, 2011,11(6):2863-2880 | [23] | Oshchepkov S, Bril A, Yokota T . An improved photon path length probability density function: based radiative transfer model for space-based observation of greenhouse gases[J]. Journal of Geophysical Research, 2009,114(D19) | [24] | Oshchepkov S, Bril A, Yokota T . PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space[J]. Journal of Geophysical Research Atmospheres, 2008,113(D23) | [25] | Reuter M, Buchwitz M, Schneising O , et al. A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds[J]. Atmospheric Measurement Techniques, 2009,3(1):209-232 | [26] | Heymann J, Reuter M, Hilker M , et al. Consistent satellite XCO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm[J]. Atmospheric Measurement Techniques Discussions, 2015,8(2):1787-1832 | [27] | Yokota T, Yoshida Y, Eguchi N , et al. Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results[J]. Scientific Online Letters on the Atmosphere Sola, 2016,5(1):160-163 | [28] | Yoshida Y, Ota Y, Eguchi N , et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite[J]. Atmospheric Measurement Techniques, 2011,4(6):4791-4833 | [29] | Yoshida Y, Kikuchi N, Yokota T . On-orbit radiometric calibration of SWIR bands of TANSO-FTS onboard GOSAT[J]. Atmospheric Measurement Techniques, 2012,5(10):2515-2523 | [30] | Yoshida Y, Kikuchi N, Morino I , et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data[J]. Atmospheric Measurement Techniques, 2013,6(6):1533-1547 | [31] | Oshchepkov S, Bril A, Yokota T , et al. Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: algorithm intercomparison in the GOSAT data processing for CO2, retrievals over TCCON sites[J]. Journal of Geophysical Research-Atmospheres, 2013,118(3):1493-1512 | [32] | O’Dell C W, Connor B, B?sch H , et al. The ACOS CO2 retrieval algorithm. Part 1: description and validation against synthetic observations[J]. Atmospheric Measurement Techniques Discussions, 2011,4(5):6097-6158 | [33] | Crisp D, Fisher B M, O’Dell C , et al. The ACOS CO2 retrieval algorithm. Part II: global XCO2 data characterization[J]. Atmospheric Measurement Techniques, 2012,5(4):687-707 | [34] | Butz A, Guerlet S, Hasekamp O , et al. Toward accurate CO2 and CH4 observations from GOSAT[J]. Geophysical Research Letters, 2011,38(14):130-137 | [35] | 杨东旭, 刘毅, 蔡兆男 , 等. 基于GOSAT反演的中国地区二氧化碳浓度时空分布研究[J]. 大气科学, 2016,40(3):541-550 | [36] | Zhou M Q, Zhang X Y, Wang P C , et al. XCO2 satellite retrieval experiments in short-wave infrared spectrum and ground-based validation[J]. Science China Earth Sciences, 2015,58(7):1191-1197 | [37] | B?sch H, Toon G C, Sen B , et al. Space-based near-infrared CO2, measurements: testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin[J]. Journal of Geophysical Research Atmospheres, 2006,111(D23):5495-5513 | [38] | Taylor T E, O’Dell C W, O’Brien D M , et al. Comparison of cloud-screening methods applied to GOSAT near-infrared spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(1):295-309 | [39] | NASA. ACOS Level 2 standard product and lite data product data user’s guide,v7.3 [EB/OL]. 2017 [ 2018-05-11]. | [40] | Boesch H, Baker D, Connor B , et al. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission[J]. Remote Sensing, 2011,3(12):270-304 | [41] | Cogan A J, Boesch H, Parker R J , et al. Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): comparison with ground-based TCCON observations and GEOS-Chem model calculations[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D21):21301 | [42] | Butz A, Hasekamp O P, Frankenberg C , et al. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects[J]. Applied Optics, 2009,48(18):3322-3336 | [43] | Schepers D, Guerlet S, Butz A , et al. Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: performance comparison of proxy and physics retrieval algorithms[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D10):63-74 | [44] | 刘毅, 蔡兆男, 杨东旭 , 等. 中国二氧化碳科学实验卫星高光谱探测仪光谱指标影响分析及优化方案[J]. 科学通报, 2013 (27):2787-2789 | [45] | Yang D X, Zhang H F, Liu Y , et al. Monitoring carbon dioxide from space: retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China[J]. Advances in Atmospheric Sciences, 2017,34(8):965-976 | [46] | Yang Z, Toon G C, Margolis J S , et al. Atmospheric CO2 retrieved from ground-based near IR solar spectra[J]. Geophysical Research Letters, 2002,29(9):51-53 | [47] | Buschmann M, Deutscher N M, Sherlock V , et al. Retrieval of XCO2 from ground-based mid-infrared (NDACC) solar absorption spectra and comparison to TCCON[J]. Atmospheric Measurement Techniques, 2016,9(2):577-585 | [48] | Kivi R, Heikkinen P . Fourier transform spectrometer measurements of column CO2 at Sodankyl?, Finland[J]. Geoscientific Instrumentation, Methods and Data Systems, 2016,5(2):271-279 | [49] | Keppel-Aleks G, Wennberg P O, Schneider T . Sources of variations in total column carbon dioxide[J]. Atmospheric Chemistry & Physics, 2011,11(8):3581-3593 | [50] | Wunch D, Wennberg P O, Toon G C , et al. A method for evaluating bias in global measurements of CO2 total columns from space[J]. Atmospheric Chemistry and Physics Discussions, 2011,11(23):12317-12337 | [51] | Guerlet S, Butz A, Schepers D , et al. Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements[J]. Journal of Geophysical Research Atmospheres, 2013,118(10):4887-4905 | [52] | Nguyen H, Osterman G, Wunch D , et al. A method for collocating satellite XCO2 data to ground-based data and its application to ACOS-GOSAT and TCCON[J]. Atmospheric Measurement Techniques, 2014,7(2):1495-1533 | [53] | 张淼, 张兴赢, 刘瑞霞 . 卫星高光谱大气CO2遥感反演精度地基验证研究[J]. 气候变化研究进展, 2014,10(6):427-432 | [54] | Wunch D, Wennberg P O, Osterman G , et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON[J]. Atmospheric Measurement Techniques, 2017,10(6):1-45 | [55] | Morino I, Uchino O, Inoue M , et al. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra[J]. Atmospheric Measurement Techniques Discussions, 2010,3(6):5613-5643 | [56] | Inoue M, Morino I, Uchino O , et al. Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data[J]. Atmospheric Measurement Techniques, 2014,13(19):2987-3005 | [57] | Zhang H F, Chen B Z, Xu G , et al. Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals[J]. Science Bulletin, 2015,60(3):380-386 | [58] | Wang W, Tian Y, Liu C , et al. Investigating the performance of a greenhouse gas observatory in Hefei, China[J]. Atmospheric Measurement Techniques, 2017,10(7):2627-2643 | [59] | Bousquet P, Ciais P, Miller J B , et al. Contribution of anthropogenic and natural sources to atmospheric methane variability[J]. Nature, 2006,443(7110):439-443 | [60] | 张兴赢, 张鹏, 廖宏 , 等. 地基傅立叶红外高光谱遥感观测大气成分平台建设及其反演技术研究[J]. 气象, 2009,35(1):9-17 | [61] | Gisi M, Hase F, Dohe S , et al. XCO2-measurements with a tabletop FTS using solar absorption spectroscopy[J]. Atmospheric Measurement Techniques, 2012,5(11):2969-2980 | [62] | Klappenbach F, Bertleff M, Kostinek J , et al. Accurate mobile remote sensing of XCO2 and XCH4 latitudinal transects from aboard a research vessel[J]. Atmospheric Measurement Techniques, 2015,8(12):5023-5038 |
|