[1] |
IPCC. Climate change 2013: the physical science basis[J]. Cambridge: Cambridge University Press, 2013
|
[2] |
Santikarn M, Theuer S L, Eden A, et al. Emissions trading worldwide: status report 2019 [R]. Berlin: ICAP, 2019
|
[3] |
Beaulieu E, Goddéris Y, Donnadieu Y, et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change[J]. Nature Climate Change, 2012, 2(5):346-349
doi: 10.1038/nclimate1419
URL
|
[4] |
Griffin M T, Montz B E, Arrigo J S. Evaluating climate change induced water stress: a case study of the lower cape fear basin, NC[J]. Applied Geography, 2013, 40:115-128
doi: 10.1016/j.apgeog.2013.02.009
URL
|
[5] |
刘璇, 郭家力, 张静文, 等. 气候变化影响下的赣江流域水资源变化趋势与幅度分析[J]. 水利水电技术, 2018, 49(6):39-46.
|
|
Liu X, Guo J L, Zhang J W, et al. Analysis on variation trend and amplitude of water resources in Ganjiang River basin under impact of climate change[J]. Water Resources and Hydropower Engineering, 2018, 49(6):39-46 (in Chinese)
|
[6] |
刘子豪, 陆建忠, 黄建武, 等. 基于CMIP5模式鄱阳湖流域未来参考作物蒸散量预估[J]. 湖泊科学, 2019, 31(6):1685-1697.
|
|
Liu Z H, Lu J Z, Huang J W, et al. Prediction and trend of future reference crop evapotranspiration in the Poyang Lake basin based on CMIP5 models[J]. Journal of Lake Sciences, 2019, 31(6):1685-1697 (in Chinese)
|
[7] |
赵梦霞, 苏布达, 王艳君, 等. 气候变化对东部季风区赣江和官厅流域径流的影响[J]. 气候变化研究进展, 2020, 16(6):679-689.
|
|
Zhao M X, Su B D, Wang Y J, et al. Impacts of climate change on river runoff at the Ganjiang and Guanting River basins in the eastern monsoon region[J]. Climate Change Research, 2020, 16(6):679-689 (in Chinese)
|
[8] |
周梦瑶, 袁飞, 张利敏, 等. 未来气候变化对赣江上游区极端径流影响预估[J]. 水电能源科学, 2020, 38(1):5-8.
|
|
Zhou M Y, Yuan F, Zhang L M, et al. Projection of future climate change impacts on extreme runoff in the upper reaches of Ganjiang River basin[J]. Water Resources and Power, 2020, 38(1):5-8 (in Chinese)
|
[9] |
O'neill B C, Tebaldi C, van Vuuren D P, et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9):3461-3482
doi: 10.5194/gmd-9-3461-2016
URL
|
[10] |
Riahi K, van Vuuren D P, Kriegler E, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview[J]. Global Environmental Change, 2017, 42:153-168
doi: 10.1016/j.gloenvcha.2016.05.009
URL
|
[11] |
姜彤, 王艳君, 苏布达, 等. 全球气候变化中的人类活动视角: 社会经济情景的演变[J]. 南京信息工程大学学报: 自然科学版, 2020, 12(1):68-80.
|
|
Jiang T, Wang Y J, Su B D, et al. Perspectives of human activities in global climate change: evolution of socio-economic scenarios[J]. Journal of Nanjing University of Information Science & Technology: Natural Science Edition, 2020, 12(1):68-80 (in Chinese)
|
[12] |
姜彤, 吕嫣冉, 黄金龙, 等. CMIP6模式新情景(SSP-RCP)概述及其在淮河流域的应用[J]. 气象科技进展, 2020, 10(5):102-109.
|
|
Jiang T, Lǚ Y R, Huang J L, et al. New scenarios of CMIP6 model (SSP-RCP) and its application in the Huaihe River basin[J]. Advances in Meteorological Science and Technology, 2020, 10(5):102-109 (in Chinese)
|
[13] |
Li H, Sheffield J, Wood E F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching[J]. Journal of Geophysical Research, 2010, 115:D10101
doi: 10.1029/2009JD012882
URL
|
[14] |
Wood A W, Leung L R, Sridhar V, et al. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs[J]. Climate Change, 2004, 62(1-3):189-216
doi: 10.1023/B:CLIM.0000013685.99609.9e
URL
|
[15] |
Rogelj J, Popp A, Calvin K V, et al. Scenarios towards limiting global mean temperature increase below 1.5℃[J]. Nature Climate Change, 2018, 8(4):325-332
doi: 10.1038/s41558-018-0091-3
|
[16] |
Gidden M J, Riahi K, Smith S J, et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century[J]. Geoscientific Model Development, 2019, 12(4):1443-1475
doi: 10.5194/gmd-12-1443-2019
URL
|
[17] |
van Marle M J E, Kloster S, Magi B I, et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015)[J]. Geoscientific Model Development, 2017, 10(9):3329-3357
doi: 10.5194/gmd-10-3329-2017
URL
|
[18] |
Hoesly R M, Smith S J, Feng L, et al. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS)[J]. Geoscientific Model Development, 2018, 11(1):369-408
doi: 10.5194/gmd-11-369-2018
URL
|
[19] |
王书霞, 张利平, 喻笑勇, 等. 遥感降水产品在澜沧江流域径流模拟中的适用性研究[J]. 长江流域资源与环境, 2019, 28(6):1365-1374.
|
|
Wang S X, Zhang L P, Yu X Y, et al. Application of remote sensing precipitation products in runoff simulation over the Lancang River basin[J]. Resources and Environment in The Yangtze Basin, 2019, 28(6):1365-1374 (in Chinese)
|
[20] |
Kundzewicz Z W, Huang S, Szcześniak M, et al. Projections of runoff in the Vistula and the Odra river basins with the help of the SWAT model[J]. Hydrology Research, 2018, 49(2):303-317
doi: 10.2166/nh.2017.280
URL
|
[21] |
Worku T, Khare D, Tripathi S K. Modeling runoff-sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed[J]. Environmental Earth Sciences, 2017, 76(16):1-14
doi: 10.1007/s12665-016-6304-z
URL
|
[22] |
Bieger K, Hörmann G, Fohrer N. Detailed spatial analysis of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China[J]. Hydrological Sciences Journal, 2015, 60(5):784-800
|
[23] |
Alavian V, Qaddumi H M, Dickson E, et al. Water and climate change: understanding the risks and making climate-smart investment decisions[M]. Washington, DC: World Bank, 2009
|
[24] |
Guo H, Hu Q, Jiang T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China[J]. Journal of Hydrology, 2008, 355(1-4):106-122
doi: 10.1016/j.jhydrol.2008.03.020
URL
|
[25] |
熊翰林. 赣江流域径流对气候变化的响应[D]. 南昌: 南昌工程学院, 2018: 29-33.
|
|
Xiong H L. Runoff simulation in Ganjiang River basin and its response to climate change[D]. Nanchang: Nanchang Institute of Technology, 2018: 29-33 (in Chinese)
|
[26] |
Su B, Huang J, Zeng X, et al. Impacts of climate change on streamflow in the upper Yangtze River basin[J]. Climatic Change, 2016, 141(3):533-546
doi: 10.1007/s10584-016-1852-5
URL
|
[27] |
Wen S, Su B, Wang Y, et al. Comprehensive evaluation of hydrological models for climate change impact assessment in the upper Yangtze River basin, China[J]. Climatic Change, 2020, 163(3):1207-1226
doi: 10.1007/s10584-020-02929-6
URL
|