气候变化研究进展 ›› 2022, Vol. 18 ›› Issue (2): 129-141.doi: 10.12006/j.issn.1673-1719.2021.059
收稿日期:
2021-04-07
修回日期:
2021-09-28
出版日期:
2022-03-30
发布日期:
2022-02-11
通讯作者:
陈昊明
作者简介:
张歆然,女,硕士研究生, 基金资助:
ZHANG Xin-Ran(), CHEN Hao-Ming()
Received:
2021-04-07
Revised:
2021-09-28
Online:
2022-03-30
Published:
2022-02-11
Contact:
CHEN Hao-Ming
摘要:
青藏高原东坡陡峭地形区是气候模式陆地降水模拟偏差的大值区,且这一偏差长期未得到有效改善。基于17个参加国际耦合模式比较计划第六阶段(CMIP6)的全球气候模式的日降水结果,评估了当前最新一代的气候模式对青藏高原东坡地区2000—2014年暖季(5—9月)降水气候态及其季节内演变的模拟能力。结果表明:高原东坡降水正偏差存在于大部分的CMIP6模式当中,且模式虚假降水主要源于对强降水(降水量≥6 mm/d)的过量模拟,模式对<6 mm/d的弱降水的模拟略小于观测。尽管模式对高原东坡暖季平均降水表现出一致性的高估,但不同模式对于不同月份降水的模拟存在较大不同。基于环流场的分析显示,高原东坡强降水的季节内演变与高原东坡及其以东对流层中层偏南风的演变密切相关,表明模式对于对流层中层环流的模拟虽然不是导致高原东坡强降水模拟正偏差的最主要因素,但对于环流季节内变化的合理模拟是模式能否再现高原东坡强降水逐月变化的一个关键因子。
张歆然, 陈昊明. CMIP6模式对青藏高原东坡暖季降水的模拟评估[J]. 气候变化研究进展, 2022, 18(2): 129-141.
ZHANG Xin-Ran, CHEN Hao-Ming. Assessment of warm season precipitation in the eastern slope of the Tibetan Plateau by CMIP6 models[J]. Climate Change Research, 2022, 18(2): 129-141.
图1 降水的空间分布 注:黑色等值线为500 m地形高度线;红色方框为高原东坡地区,范围为(101°~106°E,29°~34°N)。
Fig. 1 Spatial distribution of precipitation. (The black contour is the 500 m terrain height line, the red box (101˚-106˚E, 29˚-34˚N) is the eastern slope of the Tibetan Plateau)
图2 同图1,但为CMIP6各模式与TRMM观测偏差的空间分布
Fig. 2 Same as Fig. 1, but for the spatial distribution of precipitation deviation between CMIP6 models and TRMM observation
图3 29˚~31˚N平均的降水随经度的分布 注:灰色竖虚线为TRMM观测强降水中心的位置。
Fig. 3 Distribution of precipitation average between 29˚N and 31˚N. (The gray vertical dashed line is the location of the TRMM observation precipitation center)
图4 CMIP6各模式与TRMM观测中降水空间分布的泰勒图(a)东亚区域(70˚~130˚E,10˚~50˚N),(b)青藏高原东侧区域(100˚~110˚E,25˚~35˚N) 注:其中模式BCC-CSM2-MR(-0.06)、CAMS-CSM1-0(-0.31)和CMCC-CM2-SR5(-0.07)与TRMM观测的相关系数为负,图中未显示。
Fig. 4 Taylor diagram of the spatial distribution of precipitation between each CMIP6 model and TRMM observation. (a) East Asian region (70˚-130˚E, 10˚-50˚N), (b) the region of eastern slope of the Tibetan Plateau (100˚-110˚E, 25˚-35˚N)
图5 CMIP6各模式对青藏高原东坡地区不同强度降水的模拟(a)发生频次占总日数的百分比,(b)年累积降水量分布
Fig. 5 Simulation of each CMIP6 model for different intensity precipitation in the eastern slope of the Tibetan plateau. (a) Occurrence as a percentage of total days, (b) annual precipitation
图8 青藏高原东坡地区日降水序列与东亚地区500 hPa日南风序列相关系数空间分布 注:黑色虚框(105°~109°E,29°~34°N)为正相关大值中心。
Fig. 8 Spatial distribution of the correlation coefficients between the precipitation series in the eastern slope of the Tibetan Plateau and other regional 500 hPa southerly wind series in the East Asia region. (The black dashed box is the center of positive correlation)
图9 青藏高原东坡地区的年降水量与图8中正相关中心500 hPa南风分量的逐旬演变 注:图中灰色虚线代表旬,如图中横坐标上5表示5月中旬,上一条灰色虚线表示5月上旬,后一条灰色虚线表示5月下旬。
Fig. 9 Decade-by-decade evolution of precipitation (red line) in the eastern slope of the Tibetan Plateau and the south wind (black line) in the positive correlation center in Fig. 8. (The gray dotted line in the figure represents every ten days, for example, 5 in the figure refers to mid-May, the upper gray dotted line refers to early May, and the latter gray dotted line refers to late May)
[1] |
Dai A. Precipitation characteristics in eighteen coupled climate models[J]. Journal of Climate, 2006, 19(18):4605-4630
doi: 10.1175/JCLI3884.1 URL |
[2] |
Teixeira M, Satyamurty P. Dynamical and synoptic characteristics of heavy rainfall episodes in southern Brazil[J]. Monthly Weather Review, 2007, 135(2):598-617
doi: 10.1175/MWR3302.1 URL |
[3] |
Mehran A, Aghakouchak A, Phillips T J. Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119:1695-1707
doi: 10.1002/2013JD021152 URL |
[4] |
Alves L M, Marengo J. Assessment of regional seasonal predictability using the precis regional climate modeling system over South America[J]. Theoretical and Applied Climatology, 2010, 100(3):337-350
doi: 10.1007/s00704-009-0165-2 URL |
[5] | Gulizia C, Camilloni I. Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America[J]. International Journal of Climatology, 2015, 35(4):598-603 |
[6] | Zhou X J, Zhao P, Chen J M, et al. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J]. Science in China Series D Earth Sciences, 2009, 52(11):1679-1693 |
[7] |
Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2:663-667
doi: 10.1038/nclimate1580 URL |
[8] | 周天军, 吴波, 郭准, 等. 东亚夏季风变化机理的模拟和未来变化的预估: 成绩和问题, 机遇和挑战[J]. 大气科学, 2018, 42(4):902-934. |
Zhou T J, Wu B, Guo Z, et al. A review of East Asian summer monsoon simulation and projection: achievements and problems, opportunities and challenges[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4):902-934 (in Chinese) | |
[9] |
Yu R C, Li W, Zhang X H, et al. Climatic features related to Eastern China summer rainfalls in the NCAR CCM3[J]. Advances in Atmospheric Sciences, 2000, 17(4):503-518
doi: 10.1007/s00376-000-0014-9 URL |
[10] | 高学杰, 周广庆, 陈嘉滨. 使用气候海温的T63/NCC模式对北半球大气环流和中国气候的模拟[J]. 气候与环境研究, 2003, 8(3):339-347. |
Gao X J, Zhou G Q, Chen J B. Simulation of global circulation and climate in China by T63 model with mass conservation law[J]. Climatic and Environmental Research, 2003, 8(3):339-347 (in Chinese) | |
[11] |
Xu Y, Gao X J, Giorgi F. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections[J]. Climate Research, 2010, 41(1):61-81
doi: 10.3354/cr00835 URL |
[12] |
Xu Y, Xu C H. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J]. Atmospheric and Oceanic Science Letters, 2012, 5(6):489-494
doi: 10.1080/16742834.2012.11447041 URL |
[13] |
Su F, Duan X, Chen D, et al. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J]. Journal of Climate, 2013, 26(10):3187-3208
doi: 10.1175/JCLI-D-12-00321.1 URL |
[14] | Chen L, Frauenfeld O W. A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections[J]. Journal of Geophysical Research, 2014, 119(10):5767-5786 |
[15] | 胡岑, 姜大膀, 范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5):924-938. |
Hu Q, Jiang D B, Fan G Z. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5):924-938 (in Chinese) | |
[16] | 张武龙, 张井勇, 范广洲. CMIP5模式对我国西南地区干湿季降水的模拟和预估[J]. 大气科学, 2015, 39(3):559-570. |
Zhang W L, Zhang J Y, Fan G Z. Evaluation and projection of dry- and wet-season precipitation in southwestern China using CMIP5 models[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(3):559-570 (in Chinese) | |
[17] |
Jiang D B, Tian Z P, Lang X M. Reliability of climate models for China through the IPCC third to fifth assessment reports[J]. International Journal of Climatology, 2016, 36(3):1114-1133
doi: 10.1002/joc.4406 URL |
[18] |
Wang X J, Pang G J, Yang M X. Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J]. International Journal of Climatology, 2018, 38(3):1116-1131
doi: 10.1002/joc.2018.38.issue-3 URL |
[19] | 冯蕾, 周天军. 高分辨率MRI模式对青藏高原夏季降水及水汽输送通量的模拟[J]. 大气科学, 2015, 39(2):386-398. |
Feng L, Zhou T J. Simulation of summer precipitation and associated water vapor transport over the Tibetan Plateau by meteorological research institute model[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2):386-398 (in Chinese) | |
[20] |
Li J, Yu R C, Yuan W H, et al. Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(2):774-790
doi: 10.1002/2014MS000414 URL |
[21] |
Zhang Y, Chen H M. Comparing CAM5 and superparameterized CAM5 simulations of summer precipitation characteristics over continental East Asia: mean state, frequency-intensity relationship, diurnal cycle, and influencing factors[J]. Journal of Climate, 2016, 29(3):1067-1089
doi: 10.1175/JCLI-D-15-0342.1 URL |
[22] |
Yu R C, Li J, Zhang Y, et al. Improvement of rainfall simulation on the steep edge of the Tibetan Plateau by using a finite-difference transport scheme in CAM5[J]. Climate Dynamics, 2015, 45(9-10):2937-2948
doi: 10.1007/s00382-015-2515-3 URL |
[23] |
Ji Z, Kang S. Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios[J]. Journal of the Atmospheric Sciences, 2013, 70(4):1278-1290
doi: 10.1175/JAS-D-12-0155.1 URL |
[24] | Gao Y H, Xu J W, Chen D L. Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J]. Global Warming Focus, 2015, 28(7):2823-2841 |
[25] |
Fu Y H, Gao X J, Zhu Y M, et al. Climate change projection over the Tibetan Plateau based on a set of RCM simulations[J]. Advances in Climate Change Research, 2021, 12(3):313-321
doi: 10.1016/j.accre.2021.01.004 URL |
[26] |
Eyring V, Cox P M, Flato G M, et al. Taking climate model evaluation to the next level[J]. Nature Climate Change, 2019, 9(2):102-110
doi: 10.1038/s41558-018-0355-y URL |
[27] | 容新尧, 李建, 陈昊明, 等. CAMS-CSM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5):540-544. |
Rong X Y, Li J, Chen H M, et al. Introduction of CAMS-CSM model and its participation in CMIP6[J]. Climate Change Research, 2019, 15(5):540-544 (in Chinese) | |
[28] | 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5):445-456. |
Zhou T J, Zou L W, Chen X L. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5):445-456 (in Chinese) | |
[29] |
Jiang D B, Hu D, Tian Z P, et al. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon[J]. Advances in Atmospheric Sciences, 2020, 37(10):1102-1134
doi: 10.1007/s00376-020-2034-y URL |
[30] |
Yang X L, Zhou B T, Xu Y, et al. CMIP6 evaluation and projection of temperature and precipitation over China[J]. Advances in Atmospheric Sciences, 2021, 38(5):817-830
doi: 10.1007/s00376-021-0351-4 URL |
[31] |
Zhu Y Y, Yang S N. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5[J]. Advances in Climate Change Research, 2020, 11(3). DOI: 10.1016/j.accre.2020.08.001
doi: 10.1016/j.accre.2020.08.001 |
[32] |
Wu L, Zhai P. Validation of daily precipitation from two high-resolution satellite precipitation datasets over the Tibetan Plateau and the regions to its east[J]. Acta Meteorologica Sinica, 2012, 26(6):735-745
doi: 10.1007/s13351-012-0605-2 URL |
[33] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research, 2001, 106:7183-7192
doi: 10.1029/2000JD900719 URL |
[34] |
Lin X, Randall D A, Fowler L D. Diurnal variability of the hydrologic cycle and radiative fluxes: comparisons between observations and a GCM[J]. Journal of Climate, 2000, 13(23):4159-4179
doi: 10.1175/1520-0442(2000)013<4159:DVOTHC>2.0.CO;2 URL |
[35] | 祝从文, 刘伯奇, 左志燕, 等. 东亚夏季风次季节变化研究进展[J]. 应用气象学报, 2019, 30(4):401-415. |
Zhu C W, Liu B Q, Zuo Z Y, et al. Recent advances on sub-seasonal variability of East Asian summer monsoon[J]. Journal of Applied Meteorological Science, 2019, 30(4):401-415 (in Chinese) |
[1] | 曹剑,马利斌,李娟,王斌,王波. NUIST-ESM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 566-570. |
[2] | 周天军,邹立维,陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456. |
[3] | 刘洁,王宁练,花婷. 1960—2016年中国北方半干旱区盛夏降水时空变化及其水汽输送特征分析[J]. 气候变化研究进展, 2019, 15(3): 257-269. |
[4] | 冯琬, 范广洲, 龙妍妍. 夏季南亚高压及西太平洋副热带高压强度变化与前期海温异常的关系[J]. 气候变化研究进展, 2018, 14(2): 111-119. |
[5] | 钟权加, 张立凤, 丁瑞强, 秦箭煌. 华南夏季降水的变化特征及其与热带太平洋海温异常的关系[J]. 气候变化研究进展, 2016, 12(1): 28-36. |
[6] | 周荣卫;何晓凤;苗世光;李青春. 北京地区大气环流型及气候特征[J]. 气候变化研究进展, 2010, 6(05): 338-343. |
[7] | 李震坤;武炳义;朱伟军. 春季欧亚积雪异常影响中国夏季降水的数值试验[J]. 气候变化研究进展, 2009, 5(04): 196-201. |
[8] | 濮冰 王绍武 朱锦红;. 对中国东部夏季降水有重要影响的一种东亚遥相关型[J]. 气候变化研究进展, 2008, 04(001): 17-20. |
[9] | 许黎 王亚强 罗勇 陈振林 任万辉. 黑碳气溶胶的气候效应和拓展的研究领域[J]. 气候变化研究进展, 2007, 03(06): 328-333. |
[10] | 陈晓光 郑广芬 陈晓娟 张智. 气候变暖背景下宁夏暴雨日数的变化[J]. 气候变化研究进展, 2007, 03(02): 85-090. |
[11] | 杨小怡 王东晓 . 北极涛动与北大西洋涛动的差异[J]. 气候变化研究进展, 2006, 02(02): 82-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|