气候变化研究进展 ›› 2022, Vol. 18 ›› Issue (1): 44-57.doi: 10.12006/j.issn.1673-1719.2021.132
收稿日期:
2021-07-14
修回日期:
2021-10-29
出版日期:
2022-01-30
发布日期:
2021-12-23
通讯作者:
汪方
作者简介:
孙晨,男,工程师
基金资助:
SUN Chen1, WANG Fang2,3(), ZHOU Yue-Hua1, LI Lan1
Received:
2021-07-14
Revised:
2021-10-29
Online:
2022-01-30
Published:
2021-12-23
Contact:
WANG Fang
摘要:
基于1980—2016年长江流域站点观测降水,评估了CWRF区域气候模式对长江流域面雨量和极端降水气候事件的模拟能力。结果表明:CWRF模式能较好地再现1980—2016年长江流域及不同分区降水空间分布及月/季面雨量年际变率,且在冬、春季表现较好,夏、秋季次之。CWRF模式对长江流域面雨量存在系统性高估,对面雨量的模拟能力在长江中下游明显优于长江上游和金沙江,这可能和长江流域上游及金沙江地区地形复杂、站点稀少导致的面雨量实况代表性不足,以及CWRF模式自身模拟能力欠缺均有关。CWRF模式对长江流域极端降水事件也具备一定的模拟能力,能较好反映出长江中下游的变湿趋势,对长江上游极端强降水减弱而长江中下游地区极端强降水增强的趋势均有所体现,但对于日尺度极端降水和复杂地形下的降水模拟效果不佳。
孙晨, 汪方, 周月华, 李兰. CWRF模式对长江流域极端降水气候事件的模拟能力评估[J]. 气候变化研究进展, 2022, 18(1): 44-57.
SUN Chen, WANG Fang, ZHOU Yue-Hua, LI Lan. An assessment on extreme precipitation events in Yangtze River basin as simulated by CWRF regional climate model[J]. Climate Change Research, 2022, 18(1): 44-57.
图3 1980—2016年长江流域年平均降水量模式与观测差异的空间分布 注:阴影部分为通过0.05的显著性检验,下同。
Fig. 3 Spatial distribution of bias of annual mean precipitation between model and observation in 1980-2016. (The shaded regions indicate the bias passing the significance test at the 95% confidence level)
图5 1980—2016年长江流域季节平均降水量模式与观测差异的空间分布 注:阴影部分为通过0.05的显著性检验。
Fig. 5 Spatial distribution of bias of annual total precipitation between model and observation in 1980-2016. (The shaded regions indicate the bias passing the significance test at the 95% confidence level)
图6 1980—2016年CWRF模式(a)、ERI (b)与站点极端降水偏差百分比
Fig. 6 Geographic distributions of deviation percentage between CWRF (a), ERI (b) and OBS extreme precipitation
图10 1980—2016年CWRF模式与站点极端降水气候指数偏差百分比 注:阴影部分通过0.1的显著性检验。
Fig. 10 Geographic distributions of deviation percentage between CWRF and OBS extreme precipitation climate index. (The shaded regions indicate the bias passing the significance test at the 90% confidence level)
图12 各极端降水指数线性趋势 注:阴影部分通过0.1的显著性检验。
Fig. 12 Linear trend of extreme precipitation indexes. (The shaded regions indicate the bias passing the significance test at the 90% confidence level)
[1] |
Palutikof J P, Winkler J A, Goodess C M, et al. The simulation of daily temperature time series from GCM output. Part I: comparison of model data with observations[J]. Journal of Climate, 1997, 10(10): 2497-2513
doi: 10.1175/1520-0442(1997)010<2497:TSODTT>2.0.CO;2 URL |
[2] |
Winkler J A, Palutikof J P, Andresen J A, et al. The simulation of daily temperature time series from GCM output. Part II: sensitivity analysis of an empirical transfer function methodology[J]. Journal of Climate, 1997, 10(10): 2514-2532
doi: 10.1175/1520-0442(1997)010<2514:TSODTT>2.0.CO;2 URL |
[3] | Chou S C, Lyra A, Sueiro G, et al. 5-km resolution Eta model downscaling of present climate in the city of Santos, Brazil[C]// Jaroslav Černi Institute for the Development of Water Resources. Milankovitch anniversary UNESCO symposium: water management in transition countries as impacted by climate change and other global changes, lessons from paleoclimate, and regional issues. Belgrade: Serbia, 2014 |
[4] |
Pan X, Li X, Shi X, et al. Dynamic downscaling of near-surface air temperature at the basin scale using WRF: a case study in the Heihe River basin, China[J]. Frontiers of Earth Science, 2012, 6(3): 314-323
doi: 10.1007/s11707-012-0306-2 URL |
[5] | 程阳, 周波涛, 韩振宇, 等. 一组RegCM4动力降尺度对中国群发性高温事件的模拟评估[J]. 气候变化研究进展, 2020, 16(6): 657-666. |
Cheng Y, Zhou B T, Han Z Y, et al. Evaluation of multi-RegCM4 dynamical downscaling simulations on cluster high temperature events in China[J]. Climate Change Research, 2020, 16(6): 657-666 (in Chinese) | |
[6] |
Bucchignani E, Montesarchio M, Zollo A L, et al. High-resolution climate simulations with COSMO-CLM over Italy: performance evaluation and climate projections for the 21st century[J]. International Journal of Climatology, 2016, 36(2): 735-756
doi: 10.1002/joc.4379 URL |
[7] |
Lyra A, Tavares P, Chou S C, et al. Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution[J]. Theoretical and Applied Climatology, 2018, 132(1-2): 663-682
doi: 10.1007/s00704-017-2067-z URL |
[8] |
Giorgi F, Bates G T. The climatological skill of a regional model over complex terrain[J]. Monthly Weather Review, 1989, 117(11): 2325-2347
doi: 10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2 URL |
[9] |
Skamarock W C, Klemp J B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications[J]. Journal of Computational Physics, 2008, 227(7): 3465-3485
doi: 10.1016/j.jcp.2007.01.037 URL |
[10] |
Liang X Z, Kunkel K E, Samel A N. Development of a regional climate model for US Midwest applications. Part I: sensitivity to buffer zone treatment[J]. Journal of Climate, 2001, 14(23): 4363-4378
doi: 10.1175/1520-0442(2001)014<4363:DOARCM>2.0.CO;2 URL |
[11] |
Liang X Z, Li L, Kunkel K E, et al. Regional climate model simulation of US precipitation during 1982-2002. Part I: annual cycle[J]. Journal of Climate, 2004, 17(18): 3510-3529
doi: 10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2 URL |
[12] | Liang X Z, Xu M, Zhu J, et al. Development of the regional climate-weather research and forecasting model (CWRF): treatment of topography[R/OL]. 2005 2021-07-14. https://www.researchgate.net/publication/267550043 |
[13] |
Liang X Z, Xu M, Yuan X, et al. Regional climate-weather research and forecasting model[J]. Bulletin of The American Meteorological Society, 2012, 93(9): 1363-1387
doi: 10.1175/BAMS-D-11-00180.1 URL |
[14] |
Liu S, Wang J X L, Liang X Z, et al. A hybrid approach to improving the skills of seasonal climate outlook at the regional scale[J]. Climate Dynamics, 2016, 46(1-2): 483-494
doi: 10.1007/s00382-015-2594-1 URL |
[15] | 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787. |
Liu G Z, Liang X Z. Progress of the Climate Extension of Weather Research and Forecast (CWRF) model application in China[J]. Advances in Earth Science, 2017, 32(7): 781-787 (in Chinese) | |
[16] | 王冰笛, 李清泉, 沈新勇, 等. 区域气候模式CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330. |
Wang B D, Li Q Q, Shen X Y, et al. Climatological characteristics of the East Asian winter monsoon simulated by CWRF regional climate model[J]. Advances in Earth Science, 2020, 35(3): 319-330 (in Chinese) | |
[17] | Li Q, Wang T, Wang F, et al. Dynamical downscaling simulation of the East Asian summer monsoon in a regional Climate-Weather Research and Forecasting model[J]. International Journal of Climatology, 2021, 41:E1700-E1716 |
[18] | Yuan X, Liang X Z. Improving cold season precipitation prediction by the nested CWRF-CFS system[J]. Geophysical Research Letters, 2011, 38(2): L02706 |
[19] |
Liang X Z, Sun C, Zheng X, et al. CWRF performance at downscaling China climate characteristics[J]. Climate Dynamics, 2019, 52(3-4): 2159-2184
doi: 10.1007/s00382-018-4257-5 URL |
[20] | 刘术艳. CWRF在中国东部季风区的应用[D]. 南京: 南京信息工程大学, 2006. |
Liu S Y. Application of CWRF in monsoon region of eastern China[D]. Nanjing: Nanjing University of Information Science and Technology, 2006 (in Chinese) | |
[21] | 刘术艳, 梁信忠, 高炜, 等. 气候-天气研究及预报模式(CWRF)在中国的应用: 区域优化[J]. 大气科学, 2008, 32(3): 457-468. |
Liu S Y, Liang X Z, Gao W, et al. Application of Climate-Weather Research and Forecasting Model (CWRF) in China: domain optimization[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(3): 457-468 (in Chinese) | |
[22] | 任永建, 洪国平, 肖莺, 等. 长江流域上游气候变化的模拟评估及其未来50年情景预估[J]. 长江流域资源与环境, 2013, 22(7): 894-899. |
Ren Y J, Hong G P, Xiao Y, et al. Evaluation and projection of climate change over the upper Yangtze River in SRES scenarios[J]. Resources and Environment in the Yangtze Basin, 2013, 22(7): 894-899 (in Chinese) | |
[23] | 王艳君, 姜彤, 施雅风. 长江上游流域1961—2000年气候及径流变化趋势[J]. 冰川冻土, 2005, 27(5): 709-714. |
Wang Y J, Jiang T, Shi Y F. Changing trends of climate and runoff over the upper reaches of the Yangtze River in 1961-2000[J]. Journal of Glaciology and Geocryology, 2005, 27(5): 709-714 (in Chinese) | |
[24] | 童尧, 高学杰, 韩振宇, 等. 基于RegCM4模式的中国区域日尺度降水模拟误差订正[J]. 大气科学, 2017, 41(6): 1156-1166. |
Tong Y, Gao X J, Han Z Y, et al. Bias correction of daily precipitation simulated by RegCM4 model over China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1156-1166 (in Chinese) | |
[25] | 董晓云, 余锦华, 梁信忠, 等. CWRF模式在中国夏季极端降水模拟的误差订正[J]. 应用气象学报, 2019, 30(2): 223-232. |
Dong X Y, Yu J H, Liang X Z, et al. Bias correction of summer extreme precipitation simulated by CWRF model over China[J]. Journal of Applied Meteorological Science, 2019, 30(2): 223-232 (in Chinese) | |
[26] |
Qiao F, Liang X Z. Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States[J]. Climate Dynamic, 2017, 49:225-247
doi: 10.1007/s00382-016-3338-6 URL |
[27] |
Bretherton C S, Park S. A new moist turbulence parameterization in the Community Atmosphere Model[J]. Journal of Climate, 2009, 22(12): 3422-3448
doi: 10.1175/2008JCLI2556.1 URL |
[28] |
Tao W K, Simpson J, Baker D, et al. Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model[J]. Meteorology and Atmospheric Physics, 2003, 82:97-137
doi: 10.1007/s00703-001-0594-7 URL |
[29] | Chou M D, Suarez M J, Liang X Z, et al. A thermal infrared radiation parameterization for atmospheric studies[J]. NASA, 2001, 19(10): 4606-4661 |
[30] |
Ling T, Xu M, Liang X Z, et al. A multilevel ocean mixed layer model resolving the diurnal cycle: development and validation[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(4): 1680-1692
doi: 10.1002/2015MS000476 URL |
[31] | 张灵, 张俊, 杜良敏. 两种算法计算金沙江流域月面雨量特征差异分析[J]. 人民长江, 2016, 47(23): 34-37. |
Zhang L, Zhang J, Du L M. Calculation of characteristics of monthly areal precipitation of Jinsha River basin by two methods[J]. Yangtze River, 2016, 47(23): 34-37 (in Chinese) | |
[32] | 徐晶, 林建, 姚学祥, 等. 七大江河流域面雨量计算方法及应用[J]. 气象, 2001, 27(11): 13-16. |
Xu J, Lin J, Yao X X, et al. Calculating method of area rainfall over seven river valleys and its application[J]. Meteorological Monthly, 2001, 27(11): 13-16 (in Chinese) | |
[33] | 水利部长江水利委员会. 长江流域地图集[M]. 北京: 中国地图出版社, 1999. |
Changjiang Water Resources Committee. Atlas of the Yangtze River basin [M]. Beijing: China Cartographic Publishing House, 1999 (in Chinese) | |
[34] | 孙晨, 刘敏. 再分析资料在三峡库区气候效应研究中的应用[J]. 长江流域资源与环境, 2018, 27(9): 1998-2012. |
Sun C, Liu M. Applications of reanalysis data in the study of climate effect over the Three Gorges Reservoir area[J]. Resources and Environment in The Yangtze Basin, 2018, 27(9): 1998-2012 (in Chinese) | |
[35] |
Brown P J, Bradley R S, Keimig F T. Changes in extreme climate indices for the northeastern United States, 1870-2005[J]. Journal of Climate, 2010, 23(24): 6555-6572
doi: 10.1175/2010JCLI3363.1 URL |
[36] | 魏凤英, 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999. |
Wei F Y. Modern climate statistical diagnosis and prediction technology [M]. Beijing: China Meteorological Press, 1999 (in Chinese) | |
[37] | 王澄海, 孙超. 一个基于WRF+CLM区域气候模式(WRFC)的建立及初步试验[J]. 高原气象, 2013, 32(6): 1626-1637. |
Wang C H, Sun C. Design and preliminary test of the regional climate model (WRFC) based on Coupling WRF3.2 and CLM4.0[J]. Plateau Meteorology, 2013, 32(6): 1626-1637 (in Chinese) | |
[38] | Xu Z X, Gong T L, Li J Y. Decadal trend of climate in the Tibetan Plateau: regional temperature and precipitation[J]. Hydrological Processes: An International Journal, 2008, 22(16): 3056-3065 |
[39] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7183-7192
doi: 10.1029/2000JD900719 URL |
[40] | 孙葭, 章新平, 黄一民. 不同再分析降水数据在洞庭湖流域的精度评估[J]. 长江流域资源与环境, 2015, 24(11): 1850-1859. |
Sun J, Zhang X P, Huang Y M. Evaluation of precipitation from ERA-Interim, CRU, GPCP and TRMM reanalysis data in the Dongting Lake basin[J]. Resources and Environment in The Yangtze Basin, 2015, 24(11): 1850-1859 (in Chinese) | |
[41] | 张奇谋, 王润, 姜彤, 等. RCPs情景下汉江流域未来极端降水的模拟与预估[J]. 气候变化研究进展, 2020, 16(3): 276-286. |
Zhang Q M, Wang R, Jiang T, et al. Projection of extreme precipitation in the Hanjiang River basin under different RCP scenarios[J]. Climate Change Research, 2020, 16(3): 276-286 (in Chinese) |
[1] | 栾澜, 翟盘茂. 基于多源数据的青藏高原雨季降水特征变化分析[J]. 气候变化研究进展, 2023, 19(2): 173-190. |
[2] | 战云健, 陈东辉, 廖捷, 鞠晓慧, 赵煜飞, 任国玉. 中国60城市站1901—2019年日降水数据集的构建[J]. 气候变化研究进展, 2022, 18(6): 670-682. |
[3] | 王霞, 王瑛, 林齐根, 李宁, 张馨仁, 周笑影. 气候变化背景下中国滑坡灾害人口风险评估[J]. 气候变化研究进展, 2022, 18(2): 166-176. |
[4] | 王倩之, 刘凯, 汪明. NEX-GDDP降尺度数据对中国极端降水指数模拟能力的评估[J]. 气候变化研究进展, 2022, 18(1): 31-43. |
[5] | 徐文馨, 陈杰, 顾磊, 朱碧莹, 专美佳. 长江流域径流对全球升温1.5℃与2.0℃的响应[J]. 气候变化研究进展, 2020, 16(6): 690-705. |
[6] | 丁凯熙, 张利平, 佘敦先, 张琴, 向竣文. 全球升温1.5℃和2.0℃情景下澜沧江流域极端降水的变化特征[J]. 气候变化研究进展, 2020, 16(4): 466-479. |
[7] | 张奇谋,王润,姜彤,陈松生. RCPs情景下汉江流域未来极端降水的模拟与预估[J]. 气候变化研究进展, 2020, 16(3): 276-286. |
[8] | 尹红,孙颖. 基于ETCCDI指数2017年中国极端温度和降水特征分析[J]. 气候变化研究进展, 2019, 15(4): 363-373. |
[9] | 韩翠,尹义星,黄伊涵,刘梦洋,王小军. 江淮梅雨区1960—2014年夏季极端降水变化特征及影响因素[J]. 气候变化研究进展, 2018, 14(5): 445-454. |
[10] | 贺冰蕊,翟盘茂. 中国1961—2016年夏季持续和非持续性极端降水的变化特征[J]. 气候变化研究进展, 2018, 14(5): 437-444. |
[11] | 袁瑞强, 王亚楠, 王鹏, 王仕琴, 陈宇宏. 降水集中度的变化特征及影响因素分析——以山西为例[J]. 气候变化研究进展, 2018, 14(1): 11-20. |
[12] | 张昕怡 方国华 闻昕 叶健 郭玉雪. 中国格点化日降水极值统计模型及阈值的选取[J]. 气候变化研究进展, 2017, 13(4): 346-355. |
[13] | 梁驹, 梁骏, 雍阳阳. 广西极端降水事件气候态及其对ENSO的潜在响应[J]. 气候变化研究进展, 2017, 13(2): 117-127. |
[14] | 曾颖婷, 陆尔. 1961—2010年我国夏季总降水和极端降水的变化[J]. 气候变化研究进展, 2015, 11(2): 79-85. |
[15] | 陶辉 黄金龙 翟建青 赖锡军. 长江流域气候变化高分辨率模拟与RCP4.5情景下的预估[J]. 气候变化研究进展, 2013, 9(4): 246-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|