[1] |
IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021
|
[2] |
Li D, Zhou T, Zou L, et al. Extreme high-temperature events over East Asia in 1.5℃ and 2℃ warmer futures: analysis of NCAR CESM low-warming experiments[J]. Geophysical Research Letters, 2018, 45 (3): 1541-1550
|
[3] |
IPCC. Global warming of 1.5℃. An IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[M]. Cambridge: Cambridge University Press, 2018
|
[4] |
Zemp D C, Schleussner C F, Barbosa H M, et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks[J]. Nature Communications, 2017, 8: 14681
doi: 10.1038/ncomms14681
pmid: 28287104
|
[5] |
Ritchie P D L, Clarke J J, Cox P M, et al. Overshooting tipping point thresholds in a changing climate[J]. Nature, 2021, 592 (7855): 517-523
|
[6] |
Climate Analytics. The science of temperature overshoots[R/OL]. 2021 [2023-09-15]. https://climatenetwork.org/wp-content/uploads/2021/10/Temperature-Overshoots_AR6_Climate-Analytics-CAN.pdf
|
[7] |
UNFCCC. Adoption of the Paris Agreement[R/OL]. 2015 [2023-09-15]. https://unfccc.int/sites/default/files/resource/docs/2015/cop21/chi/l09r01c.pdf
|
[8] |
Rogelj J, Popp A, Calvin K V, et al. Scenarios towards limiting global mean temperature increase below 1.5℃[J]. Nature Climate Change, 2018, 8 (4): 325-332
doi: 10.1038/s41558-018-0091-3
|
[9] |
Zhang X, Alexander L, Hegerl G C, et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2 (6): 851-870
|
[10] |
Giorgi F, Francisco R. Evaluating uncertainties in the prediction of regional climate change[J]. Geophysical Research Letters, 2000, 27 (9): 1295-1298
|
[11] |
Tebaldi C, Debeire K, Eyring V, et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6[J]. Earth System Dynamics, 2021, 1 (1): 253-293
|
[12] |
Meehl G A, Senior C A, Eyring V, et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models[J]. Science Advances, 2020, 6 (26): 1981
|
[13] |
曹龙. IPCC AR6报告解读: 气候系统对二氧化碳移除响应[J]. 气候变化研究进展, 2021, 17 (6): 664-670.
|
|
Cao L. Climate system response to carbon dioxide removal[J]. Climate Change Research, 2021, 17 (6): 664-670 (in Chinese)
|
[14] |
Keller D P, Lenton A, Scott V, et al. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6[J]. Geoscientific Model Development, 2018, 11: 1133-1160. DOI: 10.5194/gmd-11-1133-2018
|
[15] |
Kim S K, Shin J, An S I, et al. Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing[J]. Nature Climate Change, 2022, 12: 834-840. DOI: 10.1038/s41558-022-01452-z
|
[16] |
陈晓晨, 徐影, 姚遥. 不同升温阈值下中国地区极端气候事件变化预估[J]. 大气科学, 2015, 39 (6): 1123-1135.
|
|
Chen X C, Xu Y, Yao Y. Changes in climate extremes over China in a 2℃, 3℃, and 4℃ warmer world[J]. Chinese Journal of Atmospheric Sciences, 2015, 39 (6): 1123-1135 (in Chinese)
|
[17] |
Xu C H, Xu Y. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble[J]. Atmospheric and Oceanic Science Letters, 2012, 5 (6): 527-533
|