[1] | Aselmann I, Crutzen P J.Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions[J]. Journal of Atmospheric Chemistry, 1989, 8: 307-358 | [2] | Gorham E.Role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications, 1991, 1(2): 182-195 | [3] | Turunen J, Tomppo E, Tolonen K, et al. Estimating carbon accumulation rates of undrained mires in Finland-application to boreal and subarctic regions[J]. The Honlocene, 2002, 12(1): 69-80 | [4] | Schuur E A G, Bockheim J, Candadell J G. Carbon to climate change: implications for the global carbon cycle[J]. Bioscience, 2008, 58: 701-714 | [5] | Grogan P, Michelsen A, Ambus P, et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology and Biochemistry, 2004, 36: 641-654 | [6] | 王风, 韩晓增, 李良皓, 等. 冻融过程对黑土水稳性团聚体含量影响[J]. 冰川冻土, 2009, 31(5): 915-919 | [7] | 王娇月, 宋长春, 王宪伟, 等. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土, 2011, 33: 442-452 | [8] | 王娇月. 冻融作用对大兴安岭多年冻土区泥炭地土壤有机碳的影响研究[D]. 长春: 中国科学院东北地理与农业生态研究所, 2014 | [9] | Kidd R A, Bartsch A, Wagner W.Development and validation of a diurnal difference indicator for freeze-thaw monitoring in the Siberia П project[J]. Proceedings Envisat Symposium, 2013, 572 | [10] | Song C C, Wang Y S, Wang Y Y, et al. Emission of CO2, CH4 and N2O from freshwater marsh during freeze-thaw period in northeast of China[J]. Atmospheric Environment, 2006, 40: 6879-6885 | [11] | 王宪伟, 李秀珍, 吕久俊, 等. 温度对大兴安岭北坡多年冻土湿地泥炭有机碳矿化的影响[J]. 第四纪研究, 2010, 30(3): 592-597 | [12] | 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000 | [13] | 魏智, 金会军, 张建明, 等. 气候变化条件下东北地区过年冻土变化预测[J]. 中国科学, 2011, 41: 74-84 | [14] | 孙广友. 试论沼泽与冻土的共生机理: 以中国大小兴安岭地区为例[J]. 冰川冻土, 2000, 22(4): 309-316 | [15] | 郭东信, 王绍令, 鲁国威, 等. 东北大小兴安岭多年冻土分区[J]. 冰川冻土, 1981, 3(3): 1-9 | [16] | 刘兴土. 东北湿地[M]. 北京: 科学出版社, 2005 | [17] | 金会军, 于少鹏, 吕兰芝, 等. 大小兴安岭多年冻土退化及其趋势初步评估[J]. 冰川冻土, 2006, 28(4): 467-475 | [18] | Jin H J, Yu Q H, Guo D X, et al. Degradation of permafrost in the Xing’anling Mountains, northeastern China[J]. Permafrost and Periglac Process, 2007, 18: 245-258 | [19] | 鲁如坤. 土壤农化分析[M]. 北京: 中国农业科技出版社, 2000 | [20] | Wang J Y, Song C C, Hou A X, et al. CO2 emissions from soils of different depths of a permafrost peatland, Northeast China: response to simulated freezing-thawing cycles[J]. Plant Nutrition and Soil Science, 2014, 177: 524-531 | [21] | 姚槐应, 黄昌勇, 等. 土壤微生物生态学及其实验技术[M]. 北京: 科学出版社, 2006 | [22] | Robertson G P, Coleman D C, Bledsoe C S, et al.Standard soil methods for long-term ecological research [M]. New York: Oxford University Press, 1999 | [23] | Wu X D, Fang H B, Zhao L, et al. Mineralisation and changes in the fractions of soil organic matter in soils of the permafrost region, Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2014, 25(1): 35-44 | [24] | 肖颖, 杨继松. 辽河口滨海湿地土壤有机碳矿化及其与盐分的关系[J]. 生态学杂志, 2015, 34(10): 2792-2798 | [25] | Ross D J, Tate K R, Feltham C W.Microbial biomass, and C and N mineralization, in litter and mineral soil of adjacent montane ecosystems in a southern beech (Nothofagus) forest and a tussock grassland[J]. Soil Biology and Biochemistry, 1996, 28(12): 1613-1620 | [26] | Scheu S, Parkinson D.Successional changes in microbial biomass, respiration and nutrient status during litter decomposition in an aspen and pine forest[J]. Biology and Fertility of Soils, 1995, 19(4): 327-332 | [27] | 纪宝明, 王艳芬, 李香真, 等. 内蒙古锡林河流域主要类型草原土壤中 CH4和 CO2浓度的变化[J]. 植物生态学报, 2001, 25(3): 371-374 | [28] | Mer J L, Roger P.Production, oxidation, emission and consumption of methane by soils: a review[J]. European Journal of Soil Biology, 2001, 37: 25-50 | [29] | Zimov S A, Schuur E A, Chapin F S.Climate change: permafrost and the global carbon budget[J]. Science, 2006, 312(5781): 1612-1613 | [30] | Hollesen J, Elberling B, Jansson P E.Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland[J]. Global Change Biology, 2011, 17: 911-926 | [31] | Matzner E, Borken W.Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review[J]. Soil Science, 2008, 59(2): 274-284 | [32] | Hobbie S E, Schime J P, Trumbore S E, et al. Controls over carbon storage and turnover in high-latitude soils[J]. Global Change Biology, 2000, 6(S1): 196-210 | [33] | Schimel J P, Clein J S.Microbial response to freeze-thaw cycles in tundra and taiga soils[J]. Soil Biology and Biochemistry, 1996, 28: 1061-1066 | [34] | Jenkinson D S, Ladd J N.Microbial biomass in soil: measurement and turn over[J]. Soil Biochemistry, 1981 | [35] | Larsen K S, Jonasson S, Michelsen A.Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21: 187-195 | [36] | Dick R P.Soil enzyme activities as indicators of soil quality. In: Doran J W, Coleman D C, Bezdicek D F, et al. Defining soil quality for a sustainable environment [M]. Madison, WI, 1994: 107-124 | [37] | 关松荫, 等. 土壤酶及其研究方法[M]. 北京: 农业出版社, 1986 | [38] | Tan B, Wu F Z, Yang W Q, et al. Soil biochemical dynamics at three elevations during the soil thawing period, eastern Tibetan Plateau: nutrient availabilities, microbial properties and enzyme activities[J]. African Journal of Microbiology Research, 2012, 6: 4712-4721 |
|