气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (5): 514-524.doi: 10.12006/j.issn.1673-1719.2020.221
黄禄丰1, 朱再春1, 黄萌田2(), 赵茜1, 马伟蕊1, 曾辉1
收稿日期:
2020-09-21
修回日期:
2020-12-10
出版日期:
2021-09-30
发布日期:
2021-09-28
通讯作者:
黄萌田
作者简介:
黄禄丰,男,硕士研究生
基金资助:
HUANG Lu-Feng1, ZHU Zai-Chun1, HUANG Meng-Tian2(), ZHAO Qian1, MA Wei-Rui1, ZENG Hui1
Received:
2020-09-21
Revised:
2020-12-10
Online:
2021-09-30
Published:
2021-09-28
Contact:
HUANG Meng-Tian
摘要:
利用国际耦合模式比较计划第六阶段(CMIP6)中18个地球系统模式总初级生产力(GPP)模拟数据,基于传统的多模式集合平均(MME)和可靠集合平均方法(REA),在4个未来情景(SSP1-2.6,SSP2-4.5,SSP3-7.0和SSP5-8.5)下预估了21世纪全球陆地生态系统GPP的变化量,并分析了GPP变化的驱动因子。研究结果表明:在4个未来情景下,基于REA方法预估的全球陆地生态系统年GPP在未来时期(2068—2100年)比历史时期(1982—2014年)分别增长了(14.85±3.32)、(28.43±4.97)、(37.66±7.61)和(45.89±9.21)Pg C,其增量大小和不确定性都明显低于MME方法。在4个情景下,大气CO2浓度增长对GPP变化的贡献最大,基于REA方法计算的贡献占比分别为140%、137%、115%和75%;除SSP5-8.5(24%)外,其他情景下升温均导致全球陆地生态系统GPP降低(-42%、-37%、-16%),部分抵消了CO2施肥效应的正面贡献。温度的影响存在纬度差异:升温在低纬度地区对GPP有负向贡献,在中高纬度地区为正向贡献。降水和辐射变化对GPP变化的贡献相对较小。
黄禄丰, 朱再春, 黄萌田, 赵茜, 马伟蕊, 曾辉. 基于CMIP6模式优化集合平均预估21世纪全球陆地生态系统总初级生产力变化[J]. 气候变化研究进展, 2021, 17(5): 514-524.
HUANG Lu-Feng, ZHU Zai-Chun, HUANG Meng-Tian, ZHAO Qian, MA Wei-Rui, ZENG Hui. Projection of gross primary productivity change of global terrestrial ecosystem in the 21st century based on optimal ensemble averaging of CMIP6 models[J]. Climate Change Research, 2021, 17(5): 514-524.
图1 SSP2-4.5情景下基于REA和MME方法的历史时期GPP与GPPNIRv的趋势差(a)与年均值差(b)的概率密度分布
Fig. 1 Probability distributions of the difference between trends (a) and mean value (b) of GPPNIRv and REA & MME GPP under SSP2-4.5
图2 1982—2100年不同SSP情景下REA和MME方法预估的全球GPP变化
Fig. 2 Inter-annual changes of global GPP simulated by CMIP6 models integrated with REA and MME methods during 1982-2100 under 4 SPPs
图3 4种情景下未来时期(2068—2100年)相比于历史时期(1982—2014年)GPP变化量的空间分布
Fig. 3 Spatial and latitudinal patterns of changes in GPP between historical (1982-2014) and future (2068-2100) periods
图6 基于REA方法不同情景下环境因子对全球GPP变化贡献的空间格局
Fig. 6 Spatial patterns of the environmental factors’ contribution to global GPP changes under 4 SSPs based on REA method
[1] |
Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[J]. Science, 2010, 329(5993):834-838
doi: 10.1126/science.1184984 URL |
[2] |
Li W, Ciais P, Wang Y L, et al. Recent changes in global photosynjournal and terrestrial ecosystem respiration constrained from multiple observations[J]. Geophysical Research Letters, 2018, 45(2):1058-1068
doi: 10.1002/grl.v45.2 URL |
[3] | 方精云, 柯金虎, 唐志尧, 等. 生物生产力的“4P”概念、估算及其相互关系[J]. 植物生态学报, 2001 (4):414-419. |
Fang J Y, Ke J H, Tang Z Y, et al. Implications and estimations of four terrestrial productivity parameters[J]. Chinese Journal of Plant Ecology, 2001 (4):414-419 (in Chinese) | |
[4] |
Yuan W, Liu S, Yu G, et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2010, 114(7):1416-1431
doi: 10.1016/j.rse.2010.01.022 URL |
[5] |
Canadell J G, Mooney H A, Baldocchi D D, et al. Carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding[J]. Ecosystems, 2000, 3(2):115-130
doi: 10.1007/s100210000014 URL |
[6] |
Anav A, Friedlingstein P, Beer C, et al. Spatiotemporal patterns of terrestrial gross primary production: a review[J]. Reviews of Geophysics, 2015, 53(3):785-818
doi: 10.1002/2015RG000483 URL |
[7] |
Jung M, Reichstein M, Margolis H A, et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations[J]. Journal of Geophysical Research-Biogeosciences, 2011. DOI: 10.1029/2010JG001566
doi: 10.1029/2010JG001566 |
[8] |
Wang S, Zhang Y, Ju W, et al. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data[J]. The Science of The Total Environment, 2020: 755. DOI: 10.1016/j.scitotenv.2020.142569
doi: 10.1016/j.scitotenv.2020.142569 |
[9] |
Sitch S, Friedlingstein P, Gruber N, et al. Recent trends and drivers of regional sources and sinks of carbon dioxide[J]. Biogeosciences, 2015, 12(3):653-679
doi: 10.5194/bg-12-653-2015 URL |
[10] | 王斌, 周天军, 俞永强. 地球系统模式发展展望[J]. 气象学报, 2008, 66(6):857-869. |
Wang B, Zhou T J, Yu Y Q. A perspective on Earth system model development[J]. Acta Meteorologica Sinica, 2008, 66(6):857-869 (in Chinese) | |
[11] | 王绍武, 罗勇, 赵宗慈, 等. 新一代温室气体排放情景[J]. 气候变化研究进展, 2012, 8(4):305-307. |
Wang S W, Luo Y, Zhao Z C, et al. New generation of scenarios of greenhouse gas emission[J]. Climate Change Research, 2012, 8(4):305-307 (in Chinese) | |
[12] | 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5):519-525. |
Zhang L X, Chen X L, Xin X G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP)[J]. Climate Change Research, 2019, 15(5):519-525 (in Chinese) | |
[13] |
O’Neill B C, Tebaldi C, van Vuuren D P, et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9):3461-3482
doi: 10.5194/gmd-9-3461-2016 URL |
[14] | Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscience Model Development, 2016, 9(5):1937-1958 |
[15] |
Riahi K, van Vuuren D P, Kriegler E, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview[J]. Global Environmental Change, 2017, 42:153-168
doi: 10.1016/j.gloenvcha.2016.05.009 URL |
[16] | 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5):445-456. |
Zhou T J, Zou L W, Chen X L. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5):445-456 (in Chinese) | |
[17] |
Ronald S, Eyring V, Meehl G, et al. CMIP5 scientific gaps and recommendations for CMIP6[J]. Bulletin of The American Meteorological Society, 2016, 98(1):95-105
doi: 10.1175/BAMS-D-15-00013.1 URL |
[18] |
Zscheischler J, Reichstein M, von Buttlar J, et al. Carbon cycle extremes during the 21st century in CMIP5 models: future evolution and attribution to climatic drivers[J]. Geophysical Research Letters, 2014, 41(24):8853-8861
doi: 10.1002/2014GL062409 URL |
[19] |
Mystakidis S, Davin E L, Gruber N, et al. Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates[J]. Global Change Biology, 2016, 22(6):2198-2215
doi: 10.1111/gcb.13217 pmid: 26732346 |
[20] |
Anav A, Friedlingstein P, Kidston M, et al. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system models[J]. Journal of Climate, 2013, 26(18):6801-6843
doi: 10.1175/JCLI-D-12-00417.1 URL |
[21] |
Zhu Z, Piao S, Myneni R B, et al. Greening of the Earth and its drivers[J]. Nature Climate Change, 2016, 6(8):791-795
doi: 10.1038/nclimate3004 URL |
[22] |
Sun Y, Zhang X B, Zwiers F W, et al. Rapid increase in the risk of extreme summer heat in eastern China[J]. Nature Climate Change, 2014, 4:1082-1085
doi: 10.1038/nclimate2410 URL |
[23] |
Mao J, Ribes A, Yan B, et al. Human-induced greening of the northern extratropical land surface[J]. Nature Climate Change, 2016, 6(10):959-963
doi: 10.1038/nclimate3056 URL |
[24] |
Xu C, McDowell N G, Fisher R A, et al. Increasing impacts of extreme droughts on vegetation productivity under climate change[J]. Nature Climate Change, 2019, 9(12):948-953
doi: 10.1038/s41558-019-0630-6 URL |
[25] |
Zeng Z, Zhu Z, Lian X, et al. Responses of land evapotranspiration to Earth’s greening in CMIP5 Earth system models[J]. Environmental Research Letters, 2016, 11(10):104006
doi: 10.1088/1748-9326/11/10/104006 URL |
[26] |
Allen M R, Stott P A. Estimating signal amplitudes in optimal fingerprinting, part I: theory[J]. Climate Dynamics, 2003, 21(5):477-491
doi: 10.1007/s00382-003-0313-9 URL |
[27] |
Giorgi F, Mearns L O. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method[J]. Journal of Climate, 2002, 15(10):1141-1158
doi: 10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2 URL |
[28] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 |
[29] |
Kolby S W, Reed S C, Cleveland C C, et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization[J]. Nature Climate Change, 2016, 6(3):306-310
doi: 10.1038/nclimate2879 URL |
[30] | Huang M, Piao S, Ciais P, et al. Air temperature optima of vegetation productivity across global biomes[J]. Nature Ecology & Evolution, 2019, 3(5):772-779 |
[31] |
Jung M, Reichstein M, Schwalm C R, et al. Compensatory water effects link yearly global land CO2 sink changes to temperature[J]. Nature, 2017, 541(7638):516-520
doi: 10.1038/nature20780 URL |
[32] |
Liu Y W, Piao S L, Gasser T, et al. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization[J]. Nature Geoscience, 2019, 12:809-814
doi: 10.1038/s41561-019-0436-1 URL |
[33] |
Piao S L, Liu Z, Wang T, et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands[J]. Nature Climate Change, 2017, 7(5). DOI: 10.1038/nclimate3277
doi: 10.1038/nclimate3277 |
[34] |
Schimel D, Stephens B B, Fisher J B. Effect of increasing CO2 on the terrestrial carbon cycle[J]. Proceedings of The National Academy of Sciences of The United States of America, 2015, 112(2):436-441
doi: 10.1073/pnas.1407302112 pmid: 25548156 |
[35] | Butler J H, Montzka S A. The NOAA annual greenhouse gas index (AGGI)[EB/OL]. 2020 [2021-03-18]. https://www.esrl.noaa.gov/gmd/aggi/aggi.html |
[36] | IPCC. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[R/OL]. 2019 [2020-05-01]. https://www.ipcc.ch/srccl/ |
[37] |
Goll D S, Brovkin V, Parida B R, et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling[J]. Biogeosciences, 2012, 9(9):3547-3569
doi: 10.5194/bg-9-3547-2012 URL |
[38] |
Williams I N, Torn M S, Riley W J, et al. Impacts of climate extremes on gross primary production under global warming[J]. Environmental Research Letters, 2014, 9(9):094011
doi: 10.1088/1748-9326/9/9/094011 URL |
[39] |
Zhang X, Rayner P J, Wang Y P, et al. Linear and nonlinear effects of dominant drivers on the trends in global and regional land carbon uptake: 1959 to 2013[J]. Geophysical Research Letters, 2016, 43(4):1607-1614
doi: 10.1002/grl.v43.4 URL |
[40] |
Schlund M, Eyring V, Camps-Valls G, et al. Constraining uncertainty in projected gross primary production with machine learning[J]. Journal of Geophysical Research: Biogeosciences, 2020. DOI: 10.1029/2019JG005619
doi: 10.1029/2019JG005619 |
[41] |
Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882):1444
doi: 10.1126/science.1155121 URL |
[42] |
Medlyn B E, Dreyer E, Ellsworth D, et al. Temperature response of parameters of a biochemically based model of photosynjournal. II. A review of experimental data[J]. Plant Cell and Environment, 2002, 25(9):1167-1179
doi: 10.1046/j.1365-3040.2002.00891.x URL |
[43] |
Bentsen M, Bethke I, Debernard J B, et al. The Norwegian Earth system model, NorESM1-m. Part 1: description and basic evaluation of the physical climate[J]. Geoscientific Model Development, 2013, 6(3):687-720
doi: 10.5194/gmd-6-687-2013 URL |
[44] |
Gettelman A, Hannay C, Bacmeister J T, et al. High climate sensitivity in the Community Earth System Model Version 2 (CESM2)[J]. Geophysical Research Letters, 2019, 46(14):8329-8337
doi: 10.1029/2019GL083978 |
[45] |
Meehl G A, Washington W M, Arblaster J M, et al. Climate change projections in CESM1 (CAM5) compared to CCSM4[J]. Journal of Climate, 2013, 26(17):6287-6308
doi: 10.1175/JCLI-D-12-00572.1 URL |
[46] |
Lawrence D M, Fisher R A, Koven C D, et al. The community land model version 5: description of new features, Benchmarking, and impact of forcing uncertainty[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12):4245-4287
doi: 10.1029/2018MS001583 |
[47] | Huang M T, Piao S L, Janssens I A, et al. Velocity of change in vegetation productivity over northern high latitudes[J]. Nature Ecology & Evolution, 2017, 1(11):1649-1654 |
[1] | 纪多颖,张倩,骆祉丞,陈扬馨. CMIP6二氧化碳移除模式比较计划(CDRMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 457-464. |
[2] | 宋振亚,鲍颖,乔方利. FIO-ESM v2.0模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 558-565. |
[3] | 曹剑,马利斌,李娟,王斌,王波. NUIST-ESM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 566-570. |
[4] | 辛晓歌,吴统文,张洁,张芳,李伟平,张艳武,路屹雄,房永杰,颉卫华,张莉,董敏,史学丽,李江龙,储敏,刘茜霞,颜京辉. BCC模式及其开展的CMIP6试验介绍[J]. 气候变化研究进展, 2019, 15(5): 533-539. |
[5] | 林岩銮,黄小猛,梁逸爽,秦怡,徐世明,黄文誉,徐芳华,刘利,王勇,彭怡然,王兰宁,薛巍,付昊桓,张广俊,王斌,李锐喆,张诚,卢麾,阳坤,罗勇,白玉琪,宋振亚,王敏琦,赵文婕,张峰,徐敬蘅,赵曦,陆春松,骆亦其,陈奕兆,胡勇,唐强,陈德训,杨广文,宫鹏. 清华大学CIESM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 545-550. |
[6] | 容新尧,李建,陈昊明,辛羽飞,苏京志,华莉娟,张正秋. CAMS-CSM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 540-544. |
[7] | 杨世莉,董文杰,丑洁明,刘昌新. 对地球系统模式与综合评估模型双向耦合问题的探讨[J]. 气候变化研究进展, 2019, 15(4): 335-342. |
[8] | 吴启蒙,吴立广,曹剑. NUIST地球系统模式模拟热带气旋活动的气候特征分析[J]. 气候变化研究进展, 2019, 15(2): 107-118. |
[9] | 赵宗慈 罗勇 黄建斌. 对地球系统模式评估方法的回顾[J]. 气候变化研究进展, 2013, 9(1): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|