气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (3): 305-316.doi: 10.12006/j.issn.1673-1719.2020.162
收稿日期:
2020-07-31
修回日期:
2020-09-14
出版日期:
2021-05-30
发布日期:
2021-06-01
通讯作者:
高超超
作者简介:
高雅,女,硕士研究生, 基金资助:
Received:
2020-07-31
Revised:
2020-09-14
Online:
2021-05-30
Published:
2021-06-01
Contact:
GAO Chao-Chao
摘要:
Gao2008、Crowley2013和Sigl2015火山强迫资料,均基于极地冰芯重建。由于每组重建使用的冰芯数据和分析方法等不同,因此结果存在差异,从而影响气候模式应用。文中详细梳理三组火山强迫资料在原始冰芯数据、信号识别提取和沉积通量计算等方面的差异;介绍重建中涉及的对未知火山事件发生季节、纬度及从极地硫酸盐沉积通量向平流层辐射强迫通量转换等所做的假设;归纳资料中存在的共性问题。在此基础上,总结重建不确定性对模式应用的影响,希望为涉及气候模式的研究工作提供从气候系统外强迫资料解读或审视气候变化模拟与影响评估的视角,更好为气候模拟和预测服务。
高雅, 高超超. 三组火山强迫资料差异及其对模式模拟结果的影响[J]. 气候变化研究进展, 2021, 17(3): 305-316.
GAO Ya, GAO Chao-Chao. Differences in three sets of volcanic forcing data and their impacts on climate model simulation[J]. Climate Change Research, 2021, 17(3): 305-316.
图1 火山强迫资料重建所用的(a)北极和(b)南极冰芯点位图 注:临近位置冰芯用同一符号表征,颜色用第一次被使用的重建资料标记,下同。
Fig. 1 Site map of the (a) Arctic and (b) Antarctic ice cores used for volcanic forcing data
图2 三组重建资料基于格陵兰冰芯对历史火山事件的硫酸盐沉积量估算
Fig. 2 Volcanic sulfate deposition based on ice cores in Greenland estimated in (a) Gao2008, (b) Crowley2013, and (c) Sigl2015
[1] | Trenberth K E, Dai A. Effects of mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering[J]. Geophysical Research Letter, 2007,34(15). DOI: 10.1029/2007GL030524 |
[2] |
McGregor S, Timmermann A. The effect of explosive tropical volcanism on ENSO[J]. Journal of Climate, 2011,24:2178-2191
doi: 10.1175/2010JCLI3990.1 URL |
[3] | Pausata F S R, Grini A, Caballero R, et al. High-latitude volcanic eruptions in the Norwegian Earth system model: the effect of different initial conditions and of the ensemble size[J]. Tellus B: Chemical and Physical Meteorology, 2015,67(26728). DOI: 10.3402/tellusb.v67.26728 |
[4] | Zuo M, Man W M, Zhou T J. Different impacts of northern, tropical, and southern volcanic eruptions on the tropical paci?c SST in the last millennium[J]. Journal of Climate, 2018,31:6728-6744 |
[5] |
Otto-Bliesner B L, Esther C B, Fasullo J, et al. Climate variability and change since 850 CE: an ensemble approach with the community Earth system model[J]. Bulletin of the American Meteorological Society, 2016,97:735-754
doi: 10.1175/BAMS-D-14-00233.1 URL |
[6] |
Solomon S. Stratospheric ozone depletion: a review of concepts and history[J]. Reviews of Geophysics, 1999,37:275-316
doi: 10.1029/1999RG900008 URL |
[7] |
Tilmes S, Müller R, Salawitch R. The sensitivity of polar ozone depletion to proposed geoengineering schemes[J]. Science, 2008,320:1201-1204
doi: 10.1126/science.1153966 URL |
[8] | Robock A, Oman L, Stenchikov G L. Regional climate responses to geoengineering with tropical and Arctic SO2 injections[J]. Journal of Geophysical Research: Atmospheres, 2008,113(D16). DOI: 10.1029/2008JD010050 |
[9] |
Schmidt G A, Jungclaus J H, Ammann C M, et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0)[J]. Geoscientific Model Development, 2011,4:33-45
doi: 10.5194/gmd-4-33-2011 URL |
[10] |
Adams J B, Mann M E, Ammann C M. Proxy evidence for an El Ni?o: like response to volcanic forcing[J]. Nature, 2003,426:274-278
pmid: 14628048 |
[11] |
Emile-Geay J, Seager R A. Cane M, et al. Volcanoes and ENSO over the past millennium[J]. Journal of Climate, 2008,21(13):3134-3148
doi: 10.1175/2007JCLI1884.1 URL |
[12] |
Liu F, Li J B, Wang B, et al. Divergent El Ni?o responses to volcanic eruptions at different latitudes over the past millennium[J]. Climate Dynamics, 2018,50:3799-3812
doi: 10.1007/s00382-017-3846-z URL |
[13] |
Wang T, Ottera O H, Gao Y Q, et al. The response of the north Pacific decadal variability to strong tropical volcanic eruptions[J]. Climate Dynamics, 2012,39:2917-2936
doi: 10.1007/s00382-012-1373-5 URL |
[14] |
Santer B D, Solomon S, Bonfils C, et al. Observed multivariable signals of late 20th and early 21st century volcanic activity[J]. Geophysical Research Letters, 2015,42:500-509
doi: 10.1002/2014GL062366 URL |
[15] |
Legrand M, Delmas R J. A 220-year continuous record of volcanic H2SO4 in the Antarctic ice sheet[J]. Nature, 1987,327(6124):671-676
doi: 10.1038/327671a0 URL |
[16] |
Hammer C U. Past volcanism revealed by Greenland ice sheet impurities[J]. Nature, 1977,270(5637):482-486
doi: 10.1038/270482a0 URL |
[17] |
Zielinski G A, Mayewski P A, Meeker L D, et al. A 110000 year record of explosive volcanism from the GISP2 (Greenland) ice core[J]. Quaternary Research, 1995,45:109-118
doi: 10.1006/qres.1996.0013 URL |
[18] |
Gao C C, Robock A, Ammann C. Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models[J]. Journal of Geophysical Research: Atmospheres, 2008,113(D23):D23111
doi: 10.1029/2008JD010239 URL |
[19] |
Crowley T J, Unterman M B. Technical details concerning development of a 1200-yr proxy index for global volcanism[J]. Earth System Science Data, 2012,5(1):1-28
doi: 10.5194/essd-5-1-2013 URL |
[20] |
Sigl M, Winstrup M, McConnell J R, et al. Timing and climate forcing of volcanic eruptions for the past 2500 years[J]. Nature, 2015,523:543-549
doi: 10.1038/nature14565 pmid: 26153860 |
[21] |
Toohey M, Sigl M. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE[J]. Earth System Science Data, 2017,9:809-831
doi: 10.5194/essd-9-809-2017 URL |
[22] |
Fisher D A, Koerner R M, Reeh N. Holocene climatic records from Agassiz ice cap, Ellesmere island, NWT, Canada[J]. Holocene, 1995,5(1):19-24
doi: 10.1177/095968369500500103 URL |
[23] |
Bigler M, Wagenbach D, Fischer H, et al. Sulphate record from a northeast Greenland ice core over the last 1200 years based on continuous flow analysis[J]. Annals of Glaciology, 2002,35:250-256
doi: 10.3189/172756402781817158 URL |
[24] |
Sigl M, Mcconnell J R, Layman L, et al. A new bipolar ice core record of volcanism from WAIS divide and NEEM and implications for climate forcing of the last 2000 years[J]. Journal of Geophysical Research: Atmospheres, 2013,118(3):1151-1169
doi: 10.1029/2012JD018603 URL |
[25] | Gao C C, Robock A, Self S, et al. The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: greatest volcanic sulfate event of the past 700 years[J]. Journal of Geophysical Research: Atmospheres, 2006,111(D12107):1-11 |
[26] |
Plummer C T, Curran M A J, van-Ommen T D, et al. An independently dated 2000-yr volcanic record from law dome, east Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu[J]. Climate of the Past, 2012,8:1929-1940
doi: 10.5194/cp-8-1929-2012 URL |
[27] |
Mosley-Thompson E, Thompson L G, Dai J, et al. Climate of the last 500 years: high-resolution ice core records[J]. Quaternary Science Reviews, 1993,12(6):419-430
doi: 10.1016/S0277-3791(05)80006-X URL |
[28] | Clausen H B, Hammer C U, Hvidberg C S, et al. A comparison of the volcanic records over the past 4000 years from the Green-land ice core project and Dye 3 Greenland ice cores[J]. Journal of Geophysical Research: Oceans, 1997,102:26707-26723 |
[29] |
Mayewski P A, Lyons W B, Spencer M J, et al. An ice-core record of atmospheric response to anthropogenic sulfate and nitrate[J]. Nature, 1990,346:554-556
doi: 10.1038/346554a0 URL |
[30] |
Delmas R J, Kirchner S, Palais J M, et al. 1000 years of explosive volcanism recorded at the South-Pole[J]. Tellus Series B, 1992,44(4):335-350
doi: 10.3402/tellusb.v44i4.15461 URL |
[31] | Budner D, Cole-Dai J H. The number and magnitude of large explosive volcanic eruptions between 904 and 1865 A.D.: quantitative evidence from a new South Pole ice core, in volcanism and the Earth’s atmosphere[M]. Washington DC: American Geophysical Union, 2003: 165-176 |
[32] |
Dixon D, Mayewski P A, Kaspari S, et al. A 200 year sub-annual record of sulfate in west Antarctica, from 16 ice cores[J]. Annals of Glaciology, 2004,39:545-556
doi: 10.3189/172756404781814113 URL |
[33] | Ferris D G, Cole-Dai J, Reyes A R, et al. South Pole ice core record of explosive volcanic eruptions in the first and second millennia A.D., and evidence of a large eruption in the tropics around 535 A.D.[J]. Journal of Geophysical Research: Atmospheres, 2011,116(D17308). DOI: 10.1029/2011JD015916 |
[34] |
Cole-Dai J H, Mosley-Thompson E, Wight S P, et al. A 4100-year record of explosive volcanism from an east Antarctica ice core[J]. Journal of Geophysical Research: Atmospheres, 2000,105(D19):24431-24441
doi: 10.1029/2000JD900254 URL |
[35] |
Sigl M, Mcconnell J R, Toohey M, et al. Insights from Antarctica on volcanic forcing during the Common Era[J]. Nature Climate Change, 2014,4:693-697
doi: 10.1038/nclimate2293 URL |
[36] |
Jiang S, Cole-Dai J, Li Y S, et al. A detailed 2840 year record of explosive volcanism in a shallow ice core from Dome A, east Antarctica[J]. Journal of Glaciology, 2012,58(207):65-75
doi: 10.3189/2012JoG11J138 URL |
[37] | Steig E J, Morse D L, Waddington E D, et al. Wis-consinan and Holocene climate history from an ice core at Taylor Dome, western Ross embayment, Antarctica[J]. Geografiska Annaler, 2000,82A:213-235 |
[38] | Motizuki Y, Nakai Y, Takahashi K, et al. Dating of a Dome Fuji (Antarctica) shallow ice core by volcanic signal synchronization with B32 and EDML1 chronologies[J]. The Cryosphere Discussions, 2013,8(1):769-804 |
[39] |
Cole-Dai J H, Mosley-Thompson E, Thompson L G. Annually resolved Southern Hemisphere volcanic history from two Antarctic ice cores[J]. Journal of Geophysical Research: Atmospheres, 1997,102(D14):16761-16771
doi: 10.1029/97JD01394 URL |
[40] |
Sommer S, Appenzeller C, Rothlisberger R, et al. Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud land, Antarctica: annually resolved accumulation rates[J]. Journal of Geophysical Research: Atmospheres, 2000,105(D24):29411-29421
doi: 10.1029/2000JD900449 URL |
[41] |
Traufetter F, Oerter H, Fischer H, et al. Spatio-temporal variability in volcanic sulphate deposition over the past 2 kyr in snow pits and ?rn cores from Amundsenisen, Antarctica[J]. Journal of Glaciology, 2004,50(168):137-146
doi: 10.3189/172756504781830222 URL |
[42] | Castellano E, Becagli S, Hansson M, et al. Holocene volcanic history as recorded in the sulfate stratigraphy of the European project for ice coring in Antarctica Dome C (EDC96) ice core[J]. Journal of Geophysical Research: Atmospheres, 2005,110(D06). DOI: 10.1029/2004JD005259 |
[43] | Stenni B, Proposito M, Gragnani R, et al. Eight centuries of volcanic signal and climate changeat Talos Dome (east Antarctica)[J]. Journal of Geophysical Research: Atmospheres, 2002,107(D9). DOI: 10.1029/2000JD000317 |
[44] |
Moore J C. High-resolution dielectric pro?ling of ice cores[J]. Journal of Glaciology, 1993,39(132):245-248
doi: 10.1017/S0022143000015902 URL |
[45] |
Palmer A S, Morgan V I, Curran A J, et al. Antarctic volcanic flux ratios from Law Dome ice cores[J]. Annals of Glaciology, 2002,35:329-332
doi: 10.3189/172756402781816771 URL |
[46] | 李传金, 任贾文, 秦大河, 等. 火山活动的气候影响及其冰芯记录研究进展[J]. 冰川冻土, 2012,34(4):863-876. |
Li C J, Ren J W, Qin D H, et al. Summary of research on climatic influences from volcanic activities and depositional records of volcanic matters in ice cores[J]. Journal of Glaciology and Geocryology, 2012,34(4):863-876 (in Chinese) | |
[47] | Gao C C, Oman L, Robock A, et al. Atmospheric volcanic loading derived from bipolar ice cores: accounting for the spatial distribution of volcanic deposition[J]. Journal of Geophysical Research: Atmospheres, 2007,112(D9). DOI: 0148-0227/07/2006JD007461$09.00 |
[48] |
Franck L, Jean-Philippe D, Jean-Christophe K, et al. Source of the Great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani volcanic complex, Indonesia[J]. PNAS, 2013,110:16742-16747
doi: 10.1073/pnas.1307520110 URL |
[49] |
Liu F, Chai J, Wang B, et al. Global monsoon precipitation responses to large volcanic eruptions[J]. Scientific Reports, 2016,6:24331
doi: 10.1038/srep24331 URL |
[50] |
Sun W, Liu J, Wang B, et al. A “La Ni?a-Like” state occurring in the second year after large tropical volcanic eruptions during the past 1500 years[J]. Climate Dynamics, 2019,52:7495-7509
doi: 10.1007/s00382-018-4163-x URL |
[51] |
Sun W, Wang B, Liu J, et al. How northern high-latitude volcanic eruptions in different seasons affect ENSO[J]. Journal of Climate, 2019,32:3245-3262
doi: 10.1175/JCLI-D-18-0290.1 URL |
[52] |
Cole-Dai J H, Ferris D G, Lanciki A L, et al. Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record[J]. Journal of Geophysical Research: Atmospheres, 2013,118:7459-7466
doi: 10.1002/jgrd.50587 URL |
[53] |
Esper J, Buntgen U, Hartl-Meier C, et al. Northern Hemisphere temperature anomalies during the 1450s period of ambiguous volcanic forcing[J]. Bulletin of Volcanology, 2017,79:41-49
doi: 10.1007/s00445-017-1125-9 URL |
[54] | 高超超. 基于极地冰芯的历史火山活动序列重建研究进展[J]. 极地研究, 2014,26(4):460-468. |
Gao C C. Progress of research on bipolar-ice-core-based volcanic forcing index reconstructions[J]. Chinese Journal of Polar Research, 2014,26(4):460-468 (in Chinese) | |
[55] | 张洪海, 杨桂朋. 北黄海二甲基硫(DMS)的海-气释放及其对气溶胶中非海盐硫酸盐的贡献[J]. 中国海洋大学学报, 2009,39(4):750-756. |
Zhang H H, Yang G P. Biogenic emission of Dimethylsulfide (DMS) from the north Yellow Sea and its contribution to non-sea-salt sulfate in aerosol[J]. Periodical of Ocean University of China, 2009,39(4):750-756 (in Chinese) | |
[56] |
Hartman L H, Kurbatov A V, Winski D A, et al. Volcanic glass properties from 1459 C.E. volcanic event in South Pole ice core dismiss Kuwae caldera as a potential source[J]. Scientific Reports, 2019,9:14437
doi: 10.1038/s41598-019-50939-x pmid: 31595040 |
[57] |
Stoffel M, Khodri M, Corona C, et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1500 years[J]. Nature Geoscience, 2015,8:784-788
doi: 10.1038/NGEO2526 |
[58] | Driscoll S, Bozzo A, Gray L J, et al. Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations of climate following volcanic eruptions[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D17):1-45 |
[59] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013: 1535 |
[60] |
Schmidt G A, Kelley M, Nazarenko L, et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive[J]. Journal of Advances in Modeling Earth Systems, 2014,6(1):141-184
doi: 10.1002/2013MS000265 URL |
[61] |
Andres H J, Peltier W R. Examining internal and external contributors to Greenland climate variability using CCSM3[J]. Journal of Climate, 2013,26(24):9745-9773
doi: 10.1175/JCLI-D-12-00845.1 URL |
[62] | Zhuo Z, Gao C C. Observation and model comparison on precipitation response to volcanic aerosols in the Asian monsoon region [R]. USA: American Geophysical Union, 2014 |
[63] | PAGES 2k-PMIP3 Group. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium[J]. Climate of the Past, 2015 (1):1673-1699 |
[64] |
PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era[J]. Nature Geoscience, 2019,12:643-649
doi: 10.1038/s41561-019-0400-0 URL |
[65] | Pausata F S R, Chafik L, Caballero R, et al. Impacts of high-latitude volcanic eruptions on ENSO and AMOC[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112:13784-13788 |
[66] |
Toohey M, Kruger K, Schmidt H, et al. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions[J]. Nature Geoscience, 2019,12(2):100-107
doi: 10.1038/s41561-018-0286-2 URL |
[1] | 王天鹏, 滕飞. 可计算一般均衡框架下的气候变化经济影响综合评估[J]. 气候变化研究进展, 2020, 16(4): 480-490. |
[2] | 岳溪柳, 於琍, 黄玫, 吴绍洪, 周波涛, 徐影. 人类活动影响下的北京地区气候承载力初步评估[J]. 气候变化研究进展, 2017, 13(6): 517-525. |
[3] | 于革. 白垩纪温室气候机制的模拟研究评述[J]. 气候变化研究进展, 2007, 03(01): 20-025. |
[4] | 林而达 许吟隆 蒋金荷 李玉娥 杨修 张建云 李从先 吴绍洪 赵宗群 吴建国 居辉 严昌荣 王守荣 刘允芬 杜碧兰 赵成义 秦保芳 刘春蓁 黄朝迎 张小全 马世铭 . 气候变化国家评估报告(II):气候变化的影响与适应[J]. 气候变化研究进展, 2006, 02(02): 51-56. |
[5] | 张冬峰;高学杰;赵宗慈;Jeremy S. PAL;Filippo GIORGI. RegCM3 区域气候模式对中国气候的模拟[J]. 气候变化研究进展, 2005, 01(03): 119-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|